1
|
Martinez P, Sabatier JM. Malignant tumors in vagal-innervated organs: Exploring its homeostatic role. Cancer Lett 2025; 617:217539. [PMID: 39954934 DOI: 10.1016/j.canlet.2025.217539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Cancer remains a significant global health challenge, with its progression shaped by complex and multifactorial mechanisms. Recent research suggests that the vagus nerve could play a critical role in mediating communication between the tumor microenvironment and the central nervous system (CNS). This review highlights the diversity of vagal afferent receptors, which could position the vagus nerve as a unique pathway for transmitting immune, metabolic, mechanical, and chemical signals from tumors to the CNS. Such signaling could influence systemic disease progression and tumor-related responses. Additionally, the vagus nerve's interactions with the microbiome and the renin-angiotensin system (RAS)-both implicated in cancer biology-further underscore its potential central role in modulating tumor-related processes. Contradictions in the literature, particularly concerning vagal fibers, illustrate the complexity of its involvement in tumor progression, with both tumor-promoting and tumor-suppressive effects reported depending on cancer type and context. These contradictions often overlook certain experimental biases, such as the failure to distinguish between vagal afferent and efferent fibers during vagotomies or the localized parasympathetic effects that cannot always be extrapolated to the systemic level. By focusing on the homeostatic role of the vagus nerve, understanding these mechanisms could open the door to new perspectives in cancer research related to the vagus nerve and lead to potential therapeutic innovations.
Collapse
Affiliation(s)
| | - Jean-Marc Sabatier
- Institut de NeuroPhysiopathologie (INP), CNRS UMR 7051, 27 Bd Jean Moulin, 13005, Marseille, France
| |
Collapse
|
2
|
Zeng Y, Huang Y, Tan Q, Peng L, Wang J, Tong F, Dong X. Influence of lactate in resistance to anti‑PD‑1/PD‑L1 therapy: Mechanisms and clinical applications (Review). Mol Med Rep 2025; 31:48. [PMID: 39670310 DOI: 10.3892/mmr.2024.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Metabolic reprogramming is a prominent characteristic of tumor cells, evidenced by heightened secretion of lactate, which is linked to tumor progression. Furthermore, the accumulation of lactate in the tumor microenvironment (TME) influences immune cell activity, including the activity of macrophages, dendritic cells and T cells, fostering an immunosuppressive milieu. Anti‑programmed cell death protein 1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) therapy is associated with a prolonged survival time of patients with non‑small cell lung cancer. However, some patients still develop resistance to anti‑PD‑1/PD‑L1 therapy. Lactate is associated with resistance to anti‑PD‑1/PD‑L1 therapy. The present review summarizes what is known about lactate metabolism in tumor cells and how it affects immune cell function. In addition, the present review emphasizes the relationship between lactate secretion and immunotherapy resistance. The present review also explores the potential for targeting lactate within the TME to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yi Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
3
|
Zhang B, Ohuchida K, Tsutsumi C, Shimada Y, Mochida Y, Oyama K, Iwamoto C, Sheng N, Fei S, Shindo K, Ikenaga N, Nakata K, Oda Y, Nakamura M. Dynamic glycolytic reprogramming effects on dendritic cells in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2024; 43:271. [PMID: 39343933 PMCID: PMC11441259 DOI: 10.1186/s13046-024-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma tumors exhibit resistance to chemotherapy, targeted therapies, and even immunotherapy. Dendritic cells use glucose to support their effector functions and play a key role in anti-tumor immunity by promoting cytotoxic CD8+ T cell activity. However, the effects of glucose and lactate levels on dendritic cells in pancreatic ductal adenocarcinoma are unclear. In this study, we aimed to clarify how glucose and lactate can impact the dendritic cell antigen-presenting function and elucidate the relevant mechanisms. METHODS Glycolytic activity and immune cell infiltration in pancreatic ductal adenocarcinoma were evaluated using patient-derived organoids and resected specimens. Cell lines with increased or decreased glycolysis were established from KPC mice. Flow cytometry and single-cell RNA sequencing were used to evaluate the impacts on the tumor microenvironment. The effects of glucose and lactate on the bone marrow-derived dendritic cell antigen-presenting function were detected by flow cytometry. RESULTS The pancreatic ductal adenocarcinoma tumor microenvironment exhibited low glucose and high lactate concentrations from varying levels of glycolytic activity in cancer cells. In mouse transplantation models, tumors with increased glycolysis showed enhanced myeloid-derived suppressor cell infiltration and reduced dendritic cell and CD8+ T cell infiltration, whereas tumors with decreased glycolysis displayed the opposite trends. In three-dimensional co-culture, increased glycolysis in cancer cells suppressed the antigen-presenting function of bone marrow-derived dendritic cells. In addition, low-glucose and high-lactate media inhibited the antigen-presenting and mitochondrial functions of bone marrow-derived dendritic cells. CONCLUSIONS Our study demonstrates the impact of dynamic glycolytic reprogramming on the composition of immune cells in the tumor microenvironment of pancreatic ductal adenocarcinoma, especially on the antigen-presenting function of dendritic cells.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koki Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nan Sheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shuang Fei
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
5
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Martinez P, Baghli I, Gourjon G, Seyfried TN. Mitochondrial-Stem Cell Connection: Providing Additional Explanations for Understanding Cancer. Metabolites 2024; 14:229. [PMID: 38668357 PMCID: PMC11051897 DOI: 10.3390/metabo14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial-stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses.
Collapse
Affiliation(s)
- Pierrick Martinez
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | - Ilyes Baghli
- International Society for Orthomolecular Medicine, Toronto, ON M4B 3M9, Canada;
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | | |
Collapse
|
7
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
8
|
Wu M, Wang Q, Peng Y, Liang X, Lv X, Wang S, Zhong C. Enhancing Targeted Therapy in Hepatocellular Carcinoma through a pH-Responsive Delivery System: Folic Acid-Modified Polydopamine-Paclitaxel-Loaded Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Nanoparticles. Mol Pharm 2024; 21:581-595. [PMID: 38131328 DOI: 10.1021/acs.molpharmaceut.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Currently, there is an inherent contradiction between the multifunctionality and excellent biocompatibility of anticancer drug nanocarriers, which limits their application. Therefore, to overcome this limitation, we aimed to develop a biocompatible drug delivery system for the treatment of hepatocellular carcinoma (HCC). In this study, we employed poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the fundamental framework of the nanocarrier and utilized the emulsion solvent evaporation method to fabricate nanoparticles loaded with paclitaxel (PTX), known as PTX-PHBV NPs. To enhance the tumor-targeting capability, a dopamine self-polymerization strategy was employed to form a pH-sensitive coating on the surface of the nanoparticles. Then, folic acid (FA)-targeting HCC was conjugated to the nanoparticles with a polydopamine (PDA) coating by using the Michael addition reaction, resulting in the formation of HCC-targeted nanoparticles (PTX-PHBV@PDA-FA NPs). The PTX-PHBV@PDA-FA NPs were characterized and analyzed by using dynamic light scattering, scanning electron microscopy, fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. Encouragingly, PTX-PHBV@PDA-FA NPs exhibited remarkable anticancer efficacy in an HCC xenograft mouse model. Furthermore, compared to raw PTX, PTX-PHBV@PDA-FA NPs showed less toxicity in vivo. In conclusion, these results demonstrate the potential of PTX-PHBV@PDA-FA NPs for HCC treatment and biocompatibility.
Collapse
Affiliation(s)
- Mingfang Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province, Hangzhou 310023, Zhejiang, China
| | - Qi Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yaya Peng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaohui Liang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaofeng Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Siying Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chen Zhong
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
9
|
Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes V, Escolà-Gil JC. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol 2023; 93:36-51. [PMID: 37156344 DOI: 10.1016/j.semcancer.2023.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.
Collapse
Affiliation(s)
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mireia Tondo
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Vicenta Llorente-Cortes
- Wihuri Research Institute, Helsinki, Finland; Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
10
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
11
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
12
|
Li Z, Wang Q, Huang X, Yang M, Zhou S, Li Z, Fang Z, Tang Y, Chen Q, Hou H, Li L, Fei F, Wang Q, Wu Y, Gong A. Lactate in the tumor microenvironment: A rising star for targeted tumor therapy. Front Nutr 2023; 10:1113739. [PMID: 36875841 PMCID: PMC9978120 DOI: 10.3389/fnut.2023.1113739] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Metabolic reprogramming is one of fourteen hallmarks of tumor cells, among which aerobic glycolysis, often known as the "Warburg effect," is essential to the fast proliferation and aggressive metastasis of tumor cells. Lactate, on the other hand, as a ubiquitous molecule in the tumor microenvironment (TME), is generated primarily by tumor cells undergoing glycolysis. To prevent intracellular acidification, malignant cells often remove lactate along with H+, yet the acidification of TME is inevitable. Not only does the highly concentrated lactate within the TME serve as a substrate to supply energy to the malignant cells, but it also works as a signal to activate multiple pathways that enhance tumor metastasis and invasion, intratumoral angiogenesis, as well as immune escape. In this review, we aim to discuss the latest findings on lactate metabolism in tumor cells, particularly the capacity of extracellular lactate to influence cells in the tumor microenvironment. In addition, we examine current treatment techniques employing existing medications that target and interfere with lactate generation and transport in cancer therapy. New research shows that targeting lactate metabolism, lactate-regulated cells, and lactate action pathways are viable cancer therapy strategies.
Collapse
Affiliation(s)
- Zhangzuo Li
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengzou Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qian Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hanjin Hou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiaowei Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuqing Wu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front Pharmacol 2022; 13:1091779. [PMID: 36588722 PMCID: PMC9795015 DOI: 10.3389/fphar.2022.1091779] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
It is well known that tumor cells rely mainly on aerobic glycolysis for energy production even in the presence of oxygen, and glycolysis is a known modulator of tumorigenesis and tumor development. The tumor microenvironment (TME) is composed of tumor cells, various immune cells, cytokines, and extracellular matrix, among other factors, and is a complex niche supporting the survival and development of tumor cells and through which they interact and co-evolve with other tumor cells. In recent years, there has been a renewed interest in glycolysis and the TME. Many studies have found that glycolysis promotes tumor growth, metastasis, and chemoresistance, as well as inhibiting the apoptosis of tumor cells. In addition, lactic acid, a metabolite of glycolysis, can also accumulate in the TME, leading to reduced extracellular pH and immunosuppression, and affecting the TME. This review discusses the significance of glycolysis in tumor development, its association with the TME, and potential glycolysis-targeted therapies, to provide new ideas for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Daoying Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Zhen Duan
- Function Examination Center, Anhui Chest Hospital, Hefei, China
| | - Zhenyu Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Fangfang Ge
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Ran Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Lingsuo Kong,
| |
Collapse
|
14
|
Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86:542-565. [PMID: 35151845 DOI: 10.1016/j.semcancer.2022.02.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/08/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1)-based immune checkpoint inhibitors (ICIs) have led to significant improvements in the overall survival of patients with certain cancers and are expected to benefit patients by achieving complete, long-lasting remissions and cure. However, some patients who receive ICIs either fail treatment or eventually develop immunotherapy resistance. The existence of such patients necessitates a deeper understanding of cancer progression, specifically nutrient regulation in the tumor microenvironment (TME), which includes both metabolic cross-talk between metabolites and tumor cells, and intracellular metabolism in immune and cancer cells. Here we review the features and behaviors of the TME and discuss the recently identified major immune checkpoints. We comprehensively and systematically summarize the metabolic modulation of tumor immunity and immune checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways, and further discuss the potential metabolism-based therapeutic strategies tested in preclinical and clinical settings. These findings will help to determine the existence of a link or crosstalk between tumor metabolism and immunotherapy, which will provide an important insight into cancer treatment and cancer research.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical Center, Chongqing, 400038, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, 43221, United States.
| |
Collapse
|
15
|
Metabolic guidance and stress in tumors modulate antigen-presenting cells. Oncogenesis 2022; 11:62. [PMID: 36244976 PMCID: PMC9573874 DOI: 10.1038/s41389-022-00438-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Successful antitumor immunity largely relies on efficient T cell priming by antigen-presenting cells (APCs); however, the capacity of APCs is found to be defective in many cancers. Metabolically reprogrammed cancer cells support the energetic and biosynthetic demands of their high proliferation rates by exploiting nutrients available in the tumor microenvironment (TME), which in turn limits proper metabolic reprogramming of APCs during recruitment, differentiation, activation and antigen presentation. Furthermore, some metabolites generated by the TME are unfavorable to antitumor immunity. This review summarizes recent studies on the metabolic features of APCs and their functionality in the TME. Particularly, we will describe how APCs respond to altered TME and how metabolic byproducts from cancer and immunomodulatory cells affect APCs. Finally, we introduce the current status of APC-oriented research and clinical trials targeting metabolic features to boost efficient immunotherapy.
Collapse
|
16
|
Nielsen CU, Krog NF, Sjekirica I, Nielsen SS, Pedersen ML. SNAT2 is responsible for hyperosmotic induced sarcosine and glycine uptake in human prostate PC-3 cells. Pflugers Arch 2022; 474:1249-1262. [PMID: 36175560 DOI: 10.1007/s00424-022-02752-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Solute carriers (SLC) are important membrane transport proteins in normal and pathophysiological cells. The aim was to identify amino acid SLC(s) responsible for uptake of sarcosine and glycine in prostate cancer cells and investigate the impact hereon of hyperosmotic stress. Uptake of 14C-sarcosine and 3H-glycine was measured in human prostate cancer (PC-3) cells cultured under isosmotic (300 mOsm/kg) and hyperosmotic (500 mOsm/kg) conditions for 24 h. Hyperosmotic culture medium was obtained by supplementing the medium with 200 mM of the trisaccharide raffinose. Amino acid SLC expression was studied using RT-PCR, real-time PCR, and western blotting. siRNA knockdown of SNAT2 was performed. Experiments were conducted in at least 3 independent cell passages. The uptake of Sar and Gly was increased approximately 8-ninefold in PC-3 cells after 24 h hyperosmotic culture. PAT1 mRNA and protein could not be detected, while SNAT2 was upregulated at the mRNA and protein level. Transfection with SNAT2-specific siRNA reduced Vmax of Sar uptake from 2653 ± 38 to 513 ± 38 nmol mg protein-1 min-1, without altering the Km value (3.19 ± 0.13 vs. 3.42 ± 0.71 mM), indicating that SNAT2 is responsible for at least 80% of Sar uptake in hyperosmotic cultured PC-3 cells. SNAT2 is upregulated in hyperosmotic stressed prostate cancer cells and SNAT2 is responsible for cellular sarcosine and glycine uptake in hyperosmotic cultured PC-3 cells. Sar is identified as a substrate for SNAT2, and this has physiological implications for understanding cellular solute transport in prostate cancer cells.
Collapse
Affiliation(s)
- Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Nanna Friberg Krog
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ilham Sjekirica
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Sidsel Strandgaard Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maria L Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
17
|
Xiao C, Tian H, Zheng Y, Yang Z, Li S, Fan T, Xu J, Bai G, Liu J, Deng Z, Li C, He J. Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Front Cell Dev Biol 2022; 10:1013885. [PMID: 36200045 PMCID: PMC9527271 DOI: 10.3389/fcell.2022.1013885] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer cells and immune cells all undergo remarkably metabolic reprogramming during the oncogenesis and tumor immunogenic killing processes. The increased dependency on glycolysis is the most typical trait, profoundly involved in the tumor immune microenvironment and cancer immunity regulation. However, how to best utilize glycolytic targets to boost anti-tumor immunity and improve immunotherapies are not fully illustrated. In this review, we describe the glycolytic remodeling of various immune cells within the tumor microenvironment (TME) and the deleterious effects of limited nutrients and acidification derived from enhanced tumor glycolysis on immunological anti-tumor capacity. Moreover, we elucidate the underlying regulatory mechanisms of glycolytic reprogramming, including the crosstalk between metabolic pathways and immune checkpoint signaling. Importantly, we summarize the potential glycolysis-related targets that are expected to improve immunotherapy benefits. Our understanding of metabolic effects on anti-tumor immunity will be instrumental for future therapeutic regimen development.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Chunxiang Li, ; Jie He,
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Chunxiang Li, ; Jie He,
| |
Collapse
|
18
|
Ding J, Zheng Y, Wang G, Zheng J, Chai D. The performance and perspectives of dendritic cell vaccines modified by immune checkpoint inhibitors or stimulants. Biochim Biophys Acta Rev Cancer 2022; 1877:188763. [PMID: 35872287 DOI: 10.1016/j.bbcan.2022.188763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Therapeutic dendritic cell (DC) vaccines stimulate the elimination of tumor cells by the immune system. However, while antigen-specific T cell responses induced by DC vaccines are commonly observed, the clinical response rate is relatively poor, necessitating vaccine optimization. There is evidence that the suppression of DC function by immune checkpoints hinders the anti-tumor immune responses mediated by DC vaccines, ultimately leading to the immune escape of the tumor cells. The use of immune checkpoint inhibitors (ICIs) and immune checkpoint activators (ICAs) has extended the immunotherapeutic range. It is known that both inhibitory and stimulatory checkpoint molecules are expressed by most DC subsets and can thus be used to manipulate the effectiveness of DC vaccines. Such manipulation has been investigated using strategies such as chemotherapy, agonistic or antagonistic antibodies, siRNA, shRNA, CRISPR-Cas9, soluble antibodies, lentiviruses, and adenoviruses to maximize the efficacy of DC vaccines. Thus, a deeper understanding of immune checkpoints may assist in the development of improved DC vaccines. Here, we review the actions of various ICIs or ICAs shown by preclinical studies, as well as their potential application in DC vaccines. New therapeutic interventional strategies for blocking and stimulating immune checkpoint molecules in DCs are also described in detail.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
19
|
Wong DCP, Lee EHC, Er J, Yow I, Koean RAG, Ang O, Xiao J, Low BC, Ding JL. Lung Cancer Induces NK Cell Contractility and Cytotoxicity Through Transcription Factor Nuclear Localization. Front Cell Dev Biol 2022; 10:871326. [PMID: 35652099 PMCID: PMC9149376 DOI: 10.3389/fcell.2022.871326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Actomyosin-mediated cellular contractility is highly conserved for mechanotransduction and signalling. While this phenomenon has been observed in adherent cell models, whether/how contractile forces regulate the function of suspension cells like natural killer (NK) cells during cancer surveillance, is unknown. Here, we demonstrated in coculture settings that the evolutionarily conserved NK cell transcription factor, Eomes, undergoes nuclear shuttling during lung cancer cell surveillance. Biophysical and biochemical analyses revealed mechanistic enhancement of NK cell actomyosin-mediated contractility, which is associated with nuclear flattening, thus enabling nuclear entry of Eomes associated with enhanced NK cytotoxicity. We found that NK cells responded to the presumed immunosuppressive TGFβ in the NK-lung cancer coculture medium to sustain its intracellular contractility through myosin light chain phosphorylation, thereby promoting Eomes nuclear localization. Therefore, our results demonstrate that lung cancer cells provoke NK cell contractility as an early phase activation mechanism and that Eomes is a plausible mechano-responsive protein for increased NK cytotoxicity. There is scope for strategic application of actomyosin-mediated contractility modulating drugs ex vivo, to reinvigorate NK cells prior to adoptive cancer immunotherapy in vivo (177 words).
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Junzhi Er
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ivan Yow
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | | | - Owen Ang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jingwei Xiao
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
- University Scholars Programme, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Identification of Five m6A-Related lncRNA Genes as Prognostic Markers for Endometrial Cancer Based on TCGA Database. J Immunol Res 2022; 2022:2547029. [PMID: 35571565 PMCID: PMC9095403 DOI: 10.1155/2022/2547029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Background. Due to difficulties involved in its early diagnosis and adequate prognostication, uterine corpus endometrial carcinoma (UCEC) is one of the most serious threats to human health, with the five-year survival rate being as low as roughly 60%. The discovery of specific biomarkers that serve as prognosticators of UCEC is of great significance. The role of N6-methyladenosine- (m6A-) related long noncoding RNAs (lncRNAs) in the pathogenesis of UCEC remains undefined. In this study, we explored the expression profiles of m6A-related lncRNAs of patients with UCEC and identified novel prognostic markers for UCEC. Methods. Gene expression and clinical data were extracted from The Cancer Genome Atlas. Coexpression analysis was performed to identify m6A-related lncRNAs, which were entered into univariate Cox regression models for evaluating the prognosis of UCEC. Clusters of UCEC patients and enrichment pathways were identified using consistent data clustering and gene set enrichment analysis (GSEA). A risk score model was established, and Kaplan–Meier analysis was conducted for investigating overall survival (OS) across two patient groups (high risk and low risk). Lastly, the relationship between the risk score and the cell content of 22 types of immune cells, clusters, age, programmed cell death 1 ligand-1 (PD-L1) expression level, immune score, and pathological grade was analyzed. Results. We identified a total of 2084 lncRNAs associated with m6A, of which 32 lncRNAs were prognostically relevant. Two clusters (clusters 1 and 2) of patients with UCEC were defined; patients in cluster 1 were found to have significantly higher pathological grades and shorter overall survival time compared to those in cluster 2. GSEA showed that “MITOTIC SPINDLE and other pathways” were more enriched in cluster 1. Five major lncRNAs associated with m6A were screened out, and risk score modeling was used for UCEC prognosis prediction. High risk scores were associated with a shorter OS. The risk score was also verified as an independent prognostic indicator for UCEC and was related to immune cell infiltration levels. Finally, we observed a higher pathological grade and greater levels of PD-L1 in the high-risk group than in the low-risk group of patients. Conclusions. m6A-related lncRNAs play an important role in UCEC progression. The risk-based model constructed from the five key m6A-related lncRNAs was implicated in immune cell infiltration and can potentially be an accurate prognosticator for UCEC.
Collapse
|
21
|
Lee EHC, Wong DCP, Ding JL. NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Front Immunol 2021; 12:734551. [PMID: 34594338 PMCID: PMC8476995 DOI: 10.3389/fimmu.2021.734551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells which play a key role in shaping the immune response against cancer. Initially hailed for their potential to recognise and eliminate tumour cells, their application has been greatly hindered by the immunosuppressive tumour microenvironment (TME) which suppresses NK functions (e.g., cytotoxicity). This dysfunctional state that is accompanied by phenotypic changes such as upregulation of inhibitory receptors and downregulation of activating receptors, forms the basis of what many researchers have referred to as ‘exhausted’ NK cells. However, there is no consensus on whether these phenotypes are sufficient to define an exhausted state of the NK cell. While recent advances in checkpoint inhibition appear to show promise in early-stage pre-clinical studies, much remains to be fully explored and understood in the context of the TME. The TME is where the NK cells are subjected to interaction with various cell types and soluble factors, which could exert an inhibitory effect on NK cytotoxicity. In this review, we provide an overview of the general markers of NK cell exhaustion viz, the surface activating and inhibitory receptors. We also highlight the potential role of T-box transcription factors in characterising such a dysfunctional state and discuss the often-overlooked mechanism of cell cytoskeletal dynamics in regulating NK cell function. These aspects may further contribute to NK exhaustion or NK revival in cancer and may open new avenues to explore cancer treatment strategies.
Collapse
Affiliation(s)
- E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Soltani M, Souri M, Moradi Kashkooli F. Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors. Sci Rep 2021; 11:19350. [PMID: 34588504 PMCID: PMC8481507 DOI: 10.1038/s41598-021-98638-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
One of the special features of solid tumors is the acidity of the tumor microenvironment, which is mainly due to the presence of hypoxic regions. Therefore, pH-responsive drug delivery systems have recently been highly welcomed. In the present study, a comprehensive mathematical model is presented based on extravascular drug release paradigm. Accordingly, drug delivery system using pH-responsive nanocarriers is taken into account to examine the impacts of hypoxic regions as well as the size of nanocarriers for cancerous cell-death. The extent of hypoxic regions is controlled by vascular density. This means that regions with very low vascular density represent regions of hypoxia. Using this mathematical model, it is possible to simulate the extracellular and intracellular concentrations of drug by considering the association/disassociation of the free drug to the cell-surface receptors and cellular uptake. Results show that nanocarriers with smaller sizes are more effective due to higher accumulation in the tumor tissue interstitium. The small size of the nanocarriers also allows them to penetrate deeper, so they can expose a larger portion of the tumor to the drug. Additionally, the presence of hypoxic regions in tumor reduces the fraction of killed cancer cells due to reduced penetration depth. The proposed model can be considered for optimizing and developing pH-sensitive delivery systems to reduce both cost and time of the process.
Collapse
Affiliation(s)
- M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave., Waterloo, ON, N2L3G1, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
23
|
Chen R, Chen L. Solute carrier transporters: emerging central players in tumour immunotherapy. Trends Cell Biol 2021; 32:186-201. [PMID: 34511324 DOI: 10.1016/j.tcb.2021.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
Solute carrier transporters (SLCs) mediate nutrient and metabolite cellular homeostasis. Immune cells depend on SLCs to induce rapid and robust metabolic reprogramming, thereby controlling diverse immunological responses. Recent studies hint toward an important role of SLCs in immunity. Here, we review the emerging roles of SLCs in immunotherapy via modifying the metabolism and effector functions of immune cells. We focus on the roles of three major nutrient (glucose, amino acid, and lipid)-related transporters in immunity of representative cells [T cells, dendritic cells (DCs), natural killer (NK) cells, and macrophages) in innate and adaptive immunity. Other SLCs, such as ion transporters are also briefly discussed. Finally, we propose some potential strategies for targeting SLCs to augment tumour immunotherapy.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
24
|
Porubsky S, Nientiedt M, Kriegmair MC, Siemoneit JHH, Sandhoff R, Jennemann R, Borgmann H, Gaiser T, Weis CA, Erben P, Hielscher T, Popovic ZV. The prognostic value of galactosylceramide-sulfotransferase (Gal3ST1) in human renal cell carcinoma. Sci Rep 2021; 11:10926. [PMID: 34035403 PMCID: PMC8149814 DOI: 10.1038/s41598-021-90381-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) is the deadliest primary genitourinary malignancy typically associated with asymptomatic initial presentation and poorly predictable survival. Next to established risk factors, tumor microenvironment may alter metastatic capacity and immune landscape. Due to their high concentrations, sulfoglycolipids (sulfatides) were among the first well-described antigens in RCC that are associated with worse prognosis. As sulfatide detection in routine diagnostics is not possible, we aimed to test the prognostic value of its protein counterpart, sulfatide-producing enzyme Gal3ST1. We performed retrospective long-term follow up analysis of Gal3ST1 expression as prognostic risk factor in a representative RCC patient cohort. We observed differentially regulated Gal3ST1 expression in all RCC types, being significantly more associated with clear cell RCC than to chromophobe RCC (p = 0.001). Surprisingly, in contrast to published observations from in vitro models, we could not confirm an association between Gal3ST1 expression and a malignant clinical behaviour of the RCC. In our cohort, Gal3ST1 did not significantly influence progression-free survival (Hazard Ratio (HR): 1.7 95% CI (0.6–4.9), p = 0.327). Particularly after adjusting for histology, T-stage, N-status and M-status at baseline, we observed no independent prognostic effect (HR = 1.0 95% CI (0.3–3.3), p = 0.96). The analysis of Gal3ST1 mRNA expression in a TCGA dataset supported the results of our cohort. Thus, Gal3ST1 might help to differentiate between chromophobe RCC and other frequent RCC entities but—despite previously published data from cell culture models—does not qualify as a prognostic marker for RCC. Further investigation of regulatory mechanisms of sulfatide metabolism in human RCC microenvironment is necessary to understand the role of this quantitatively prominent glycosphingolipid in RCC progression.
Collapse
Affiliation(s)
- Stefan Porubsky
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Institute of Pathology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Malin Nientiedt
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian C Kriegmair
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jörn-Helge Heinrich Siemoneit
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hendrik Borgmann
- Department of Urology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Philipp Erben
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Zoran V Popovic
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
25
|
Mack N, Mazzio E, Badisa R, Soliman KFA. Metabolic Response to the Mitochondrial Toxin 1-Methyl-4-phenylpyridinium (MPP+) in LDH-A/B Double-knockout LS174T Colon Cancer Cells. Cancer Genomics Proteomics 2021; 18:385-405. [PMID: 33994363 DOI: 10.21873/cgp.20267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Rapid glycolytic substrate-level phosphorylation (SLP) and accumulation of lactic acid are characteristics of diverse cancers. Recent advances in drug discovery have included the use of glycolytic inhibitors with mitochondrial targeting drugs to attempt to invoke an energy crisis in aggressive metabolically active chemo-resistant cancers. In this work, we examine the consequences of inhibiting mitochondrial oxidative phosphorylation (OXPHOS) with 1-methyl-4-phenylpyridinium (MPP+) in LS14T colon cancer cells containing a genetic double knock out (DKO) of lactic acid dehydrogenase (LDHA and LDHB). MATERIALS AND METHODS Several metabolic parameters were evaluated concomitant to whole transcriptomic (WT) mRNA, microRNA, and long intergenic non-coding RNAs using Affymetrix 2.1 human ST arrays. RESULTS MPP+ effectively blocked OXPHOS where a compensatory shift toward anaerobic SLP was only observed in the control vector (CV), and not observed in the LDH-A/B DKOs (lacking the ability to produce lactic acid). Despite this, there was an unexpected resilience to MPP+ in the latter in terms of energy, which displayed significantly higher resting baseline respiratory OXPHOS capacity relative to controls. At the transcriptome level, MPP+ invoked 1738 differential expressed genes (DEGs) out of 48,226; LDH-A/B DKO resulted in 855 DEGs while 349 DEGs were found to be overlapping in both groups versus respective controls, including loss of mitochondrial complex I (subunits 3 and 6), cell cycle transcripts and fluctuations in epigenetic chromatin remodeling systems. In terms of energy, the effects of MPP+ in the CV transcripts reflect the funneling of carbon intermediates toward glycolysis. The LDH-A/B DKO transcripts reflect a flow of carbons away from glycolysis toward the production of acetyl-CoA. CONCLUSION The findings from this study suggest a metabolic resilience to MPP+ in cancer cells devoid of LDH-A/B, explainable in-part by higher baseline OXPHOS respiratory ATP production, necessitating more toxin to suppress the electron transport chain.
Collapse
Affiliation(s)
- Nzinga Mack
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Elizabeth Mazzio
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
26
|
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol 2021; 12:613492. [PMID: 33732237 PMCID: PMC7959811 DOI: 10.3389/fimmu.2021.613492] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.
Collapse
Affiliation(s)
- Xin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youe He
- Department of Translational Medicine, Cancer Biological Treatment Center, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|