1
|
Luo J, Peng S, Jiang Z, Wang Q, Zhang M, Zeng Y, Yuan Y, Xia M, Hong Z, Yan Y, Tan Y, Tang J, Xie C, Gong Y. Roles and therapeutic opportunities of ω-3 long-chain polyunsaturated fatty acids in lung cancer. iScience 2025; 28:111601. [PMID: 39834867 PMCID: PMC11742864 DOI: 10.1016/j.isci.2024.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Over the past decades, researchers have continuously investigated the potential functions of long-chain polyunsaturated fatty acids (LCPUFAs) in cancers, including lung cancer. The ω-3 LCPUFAs, primarily consisting of eicosapentaenoic acid and docosahexaenoic acid, were found to modify inflammatory tumor microenvironment, induce cancer cell apoptosis and autophagy, and suppress tumor development when administered alone or with other therapeutical strategies. Although the precise anti-tumor mechanism has not been elucidated yet, ω-3 LCPUFAs are often used in the nutritional treatment of patients with cancer due to their ability to significantly improve patient's nutritional status, increase the sensitivity of tumor cells to treatments, and alleviate cancer-related complications. Here we present the key roles of ω-3 LCPUFAs as dietary supplementations in lung cancer, comprehensively review the recent progress on the underlying mechanisms of cancer cell regulation by ω-3 LCPUFAs, and introduce the application of ω-3 LCPUFAs in the clinical management of lung cancer and its malignant complications.
Collapse
Affiliation(s)
- Jiang Luo
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Peng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingwei Wang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mini Zhang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxin Zeng
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yuan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Xia
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zixi Hong
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufei Yan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yushuang Tan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiawen Tang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Zhao H, Wu S, Luo Z, Liu H, Sun J, Jin X. The association between circulating docosahexaenoic acid and lung cancer: A Mendelian randomization study. Clin Nutr 2022; 41:2529-2536. [PMID: 36223714 DOI: 10.1016/j.clnu.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Lung cancer is a malignant tumor with a high incidence, it is vital to identify modifiable and avoidable risk factors for primary prevention, which can significantly lower the risk of cancer by preventing exposure to hazards and altering risky behavior. Some observational studies suggest that an increase in docosahexaenoic acid (DHA) consumption can reduce lung cancer risk. However, interpretation of these observational findings is difficult due to residual confounding or reverse causality. To evaluate the link between DHA and lung cancer, we have undertaken this analysis to examine the causal association between DHA and the risk of lung cancer using a two-sample Mendelian randomization (MR) framework. METHODS We performed a two-sample MR analysis to evaluate the causal effect of plasma DHA levels on lung cancer risk. For the exposure data, we extracted genetic variants as instrumental variables (IVs) that are strongly associated with DHA from a large-scale genome-wide association study (GWAS). We obtained the corresponding effect estimates for IVs on the risk of lung cancer with 11,348 cases and 15,861 controls. Finally, we applied Mendelian randomization analysis to obtain preliminary MR results and performed sensitivity analyses to verify the robustness of our results. RESULTS According to the primary MR estimates and further sensitivity analyses, a higher serum DHA level was associated with a higher risk of lung cancer [OR = 1.159, 95% CI (1.04-1.30), P = 0.01]. For lung adenocarcinoma, the results also showed a close correlation between the DHA level and lung adenocarcinoma [OR = 1.277, 95% CI (1.09-1.50), P = 0.003], but it was not statistically significant for squamous cell carcinoma [OR = 1.071, 95% CI (0.89-1.29), P = 0.467]. CONCLUSIONS Our study revealed that plasma DHA is positively associated with the risk of lung cancer overall, especially for lung adenocarcinoma. This study provides new information to develop dietary guidelines for primary lung cancer prevention.
Collapse
Affiliation(s)
- Hang Zhao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; China-Japan Friendship Hospital, Yinghuadong Road, Beijing 100029, Chaoyang District, China
| | - Shengnan Wu
- The First Affiliated Hospital of China Medical University, Shengyang, China
| | - Zhenkai Luo
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Junwei Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaolin Jin
- The First Affiliated Hospital of China Medical University, Shengyang, China; Department of International Physical Examination Center, The First Affiliated Hospital of China Medical University, Shengyang, China.
| |
Collapse
|
4
|
Biswas P, Datta HK, Dastidar P. Designing Coordination Polymers as Multi-drug-self-delivery System for Tuberculosis and Cancer Therapy: in vitro Viability and in vivo Toxicity Assessment. Biomater Sci 2022; 10:6201-6216. [PMID: 36097681 DOI: 10.1039/d2bm00752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proof of the concept for designing multi-drug-delivery system suitable for self-drug-delivery is disclosed. Simple coordination chemistry was employed to anchor two kinds of drugs namely isoniazid (IZ – anti-tuberculosis),...
Collapse
Affiliation(s)
- Protap Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Hemanta Kumar Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| |
Collapse
|
5
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|