1
|
Suzuki H, Fujiwara N, Singal AG, Baumert TF, Chung RT, Kawaguchi T, Hoshida Y. Prevention of liver cancer in the era of next-generation antivirals and obesity epidemic. Hepatology 2025:01515467-990000000-01139. [PMID: 39808821 PMCID: PMC7617594 DOI: 10.1097/hep.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Preventive interventions are expected to substantially improve the prognosis of patients with primary liver cancer, predominantly HCC and cholangiocarcinoma. HCC prevention is challenging in the face of the evolving etiological landscape, particularly the sharp increase in obesity-associated metabolic disorders, including metabolic dysfunction-associated steatotic liver disease. Next-generation anti-HCV and HBV drugs have substantially reduced, but not eliminated, the risk of HCC and have given way to new challenges in identifying at-risk patients. The recent development of new therapeutic agents and modalities has opened unprecedented opportunities to refine primary, secondary, and tertiary HCC prevention strategies. For primary prevention (before exposure to risk factors), public health policies, such as universal HBV vaccination, have had a substantial prognostic impact. Secondary prevention (after or during active exposure to risk factors) includes regular HCC screening and chemoprevention. Emerging biomarkers and imaging modalities for HCC risk stratification and detection may enable individual risk-based personalized and cost-effective HCC screening. Clinical studies have suggested the potential utility of lipid-lowering, antidiabetic/obesity, and anti-inflammatory agents for secondary prevention, and some of them are being evaluated in prospective clinical trials. Computational and experimental studies have identified potential chemopreventive strategies directed at diverse molecular, cellular, and systemic targets for etiology-specific and/or agnostic interventions. Tertiary prevention (in conjunction with curative-intent therapies for HCC) is an area of active research with the development of new immune-based neoadjuvant/adjuvant therapies. Cholangiocarcinoma prevention may advance with recent efforts to elucidate risk factors. These advances will collectively lead to substantial improvements in liver cancer mortality rates.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Amit G. Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas F. Baumert
- Inserm, U1110, Institute for Translational Medicine and Liver Diseases, University of Strasbourg, F-67000, France
- IHU Strasbourg, F-67000 Strasbourg, France
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, F-67000Strasbourg, France
| | - Raymond T. Chung
- Liver Center, GI Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Goodwin B, Lou J, Butchy M, Wilson T, Atabek U, Spitz F, Hong Y. Hepatocellular-Cholangiocarcinoma Collision Tumors: An Update of Current Management Practices. Am Surg 2023; 89:2685-2692. [PMID: 36031932 DOI: 10.1177/00031348221124323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is a rare form of primary hepatic collision tumor, with an incidence ranging from 0.4 to 14.2%. Given the diagnostic challenges and lack of randomized trials, standardized treatment has yet to be established. We aim to review the literature to summarize the diagnosis, molecular characteristics, current treatment modalities, and challenges for cHCC-CC. A literature review was performed using PubMed. We included studies investigating and describing cHCC-CC, focusing on surgical, medical, and radiologic treatments. Overall prognosis is poor, with a 5-year survival rate under 30%. Minor or major hepatectomy with R0 resection is the only curative treatment; however, recurrence is likely (as high as 50% within 5 years). The role of liver transplantation is also highly debated given the biliary nature of these tumors, with cHCC-CC as a relative contraindication for liver transplantation. Although gemcitabine-based treatments had higher progression-free survival over sorafenib, there is no standard chemotherapy regimen. Treatment with gemcitabine and platinum demonstrates improved disease control rates compared to gemcitabine in conjunction with 5-fluorouracil (78.4% verse 38.5% respectively). Additionally, platinum-containing chemotherapy regimens exhibit a higher overall response rate than non-platinum regimens (21.4% verse 7.0% respectively). These molecular-directed therapies have prolonged survival for HCC, but further investigation needs to be done to assess their utility in patients with cHCC-CC. cHCC-CC is a rare and complex subset of primary hepatic neoplasms with a dismal prognosis and unstandardized treatment options. Further trials need to be performed to investigate systemic chemotherapy and immunotherapy options for patients with unresectable disease.
Collapse
Affiliation(s)
- Brandon Goodwin
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | | | | | - Traeden Wilson
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | | | | | - Young Hong
- Cooper University Hospital, Camden, NJ, USA
| |
Collapse
|
3
|
Lee C, Lin J, Prokop A, Gopalakrishnan V, Hanna RN, Papa E, Freeman A, Patel S, Yu W, Huhn M, Sheikh AS, Tan K, Sellman BR, Cohen T, Mangion J, Khan FM, Gusev Y, Shameer K. StarGazer: A Hybrid Intelligence Platform for Drug Target Prioritization and Digital Drug Repositioning Using Streamlit. Front Genet 2022; 13:868015. [PMID: 35711912 PMCID: PMC9197487 DOI: 10.3389/fgene.2022.868015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Target prioritization is essential for drug discovery and repositioning. Applying computational methods to analyze and process multi-omics data to find new drug targets is a practical approach for achieving this. Despite an increasing number of methods for generating datasets such as genomics, phenomics, and proteomics, attempts to integrate and mine such datasets remain limited in scope. Developing hybrid intelligence solutions that combine human intelligence in the scientific domain and disease biology with the ability to mine multiple databases simultaneously may help augment drug target discovery and identify novel drug-indication associations. We believe that integrating different data sources using a singular numerical scoring system in a hybrid intelligent framework could help to bridge these different omics layers and facilitate rapid drug target prioritization for studies in drug discovery, development or repositioning. Herein, we describe our prototype of the StarGazer pipeline which combines multi-source, multi-omics data with a novel target prioritization scoring system in an interactive Python-based Streamlit dashboard. StarGazer displays target prioritization scores for genes associated with 1844 phenotypic traits, and is available via https://github.com/AstraZeneca/StarGazer.
Collapse
Affiliation(s)
- Chiyun Lee
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Junxia Lin
- Georgetown University, Washington, DC, United States
| | | | | | - Richard N. Hanna
- Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Eliseo Papa
- Research Data and Analytics, R&D IT, AstraZeneca, Cambridge, United Kingdom
| | - Adrian Freeman
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Saleha Patel
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Wen Yu
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Monika Huhn
- Biometrics and Information Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Abdul-Saboor Sheikh
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Keith Tan
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bret R. Sellman
- Discovery Microbiome, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Taylor Cohen
- Discovery Microbiome, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Jonathan Mangion
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Faisal M. Khan
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Yuriy Gusev
- Georgetown University, Washington, DC, United States
| | - Khader Shameer
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States,*Correspondence: Khader Shameer,
| |
Collapse
|
4
|
Park JM, Choi HE, Kudaibergen D, Kim JH, Kim KS. Recent Advances in Hollow Gold Nanostructures for Biomedical Applications. Front Chem 2021; 9:699284. [PMID: 34169061 PMCID: PMC8217768 DOI: 10.3389/fchem.2021.699284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The localized surface plasmon resonance of metallic nanoparticles has attracted much attention owing to its unique characteristics, including the enhancement of signals in sensors and photothermal effects. In particular, hollow gold nanostructures are highly promising for practical applications, with significant advantages being found in their material properties and structures: 1) the interaction between the outer surface plasmon mode and inner cavity mode leads to a greater resonance, allowing it to absorb near-infrared light, which can readily penetrate tissue; 2) it has anti-corrosiveness and good biocompatibility, which makes it suitable for biomedical applications; 3) it shows a reduced net density and large surface area, allowing the possibility of nanocarriers for drug delivery. In this review, we present information on the classification, characteristics, and synthetic methods of hollow gold nanostructures; discuss the recent advances in hollow gold nanostructures in biomedical applications, including biosensing, bioimaging, photothermal therapy, and drug delivery; and report on the existing challenges and prospects for hollow gold nanostructures.
Collapse
Affiliation(s)
- Jeong-Min Park
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, Busan, South Korea
| | - Dauletkerey Kudaibergen
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|