1
|
Kusunoki M, Isoda T, Yamashita K, Kitamura Y, Kikuchi K, Sando M, Baba S, Kuga D, Fujioka Y, Narutomi F, Yoshimoto K, Ishigami K, Togao O. Integration of amide proton transfer-weighted imaging and methionine positron emission tomography histogram parameters enhances the prediction of isocitrate dehydrogenase mutations in adult diffuse gliomas. EJNMMI REPORTS 2025; 9:13. [PMID: 40229611 PMCID: PMC11996729 DOI: 10.1186/s41824-025-00248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND To evaluate whether the combination of amide proton transfer-weighted imaging (APT-WI) and methionine positron emission tomography (MET-PET) enhances the non-invasive prediction of isocitrate dehydrogenase (IDH) mutation status in adult diffuse gliomas. RESULTS We retrospectively analysed 28 adult patients with histologically confirmed diffuse gliomas who underwent preoperative APT-WI and MET-PET imaging at our institution. Histogram analyses were conducted for both imaging modalities, extracting parameters such as the 10th, 50th, 70th, and 90th percentiles, mean, variance, skewness, and kurtosis. Parameters between IDH-mutant and IDH-wildtype gliomas were compared using the Mann-Whitney U test. Diagnostic performance was assessed using receiver operating characteristic (ROC) curve analysis, and combined models of the two parameters were constructed using multivariable logistic regression. IDH-wildtype gliomas exhibited significantly higher APT-WI 90th percentile (APT90) values (median: 3.51%, interquartile range [IQR]: 1.92-4.23%) compared to IDH-mutant gliomas (median: 2.24%, IQR: 1.52-2.85%, p = 0.039). Similarly, IDH-wildtype gliomas showed elevated MET-PET maximum tumour-to-normal ratios (TNRmax) (median: 2.51, IQR: 2.13-3.41) compared to IDH-mutant gliomas (median: 1.62, IQR: 1.30-2.77, p = 0.020). ROC curve analysis indicated that the combined model of APT90 and TNR kurtosis achieved an area under the curve of 0.85, demonstrating superior diagnostic accuracy compared to that of single-parameter models. CONCLUSIONS Combining histogram-derived parameters from APT-WI and MET-PET significantly improves the diagnostic accuracy for predicting IDH mutation status in diffuse gliomas. This non-invasive approach may serve as a valuable adjunct for preoperative evaluation and the development of personalised treatment strategies in patients with gliomas.
Collapse
Affiliation(s)
- Masaoki Kusunoki
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takuro Isoda
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Yamashita
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiyuki Kitamura
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazufumi Kikuchi
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motohiro Sando
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shingo Baba
- Departments of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Departments of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Fujioka
- Departments of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumiya Narutomi
- Departments of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Departments of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Osamu Togao
- Departments of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Alkayyal AA, Mahmoud AB. A 5-Year Update on the Clinical Development of Cancer Cell-Based Vaccines for Glioblastoma Multiforme. Pharmaceuticals (Basel) 2025; 18:376. [PMID: 40143152 PMCID: PMC11946125 DOI: 10.3390/ph18030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is considered one of the most aggressive forms of brain cancer with a 15-month median survival, despite advancements in surgery, radiotherapy, and chemotherapy. The immune-suppressed tumor microenvironment and the blood-brain barrier are major contributors to its poor prognosis and treatment resistance. In the last decade, significant progress has been made in developing cell-based vaccines to boost immune responses against GBM. This review provides an extensive update on recent clinical trials involving various cancer cell vaccines, including ICT-107, the α-type-1 DC vaccine, and others. Although these trials have demonstrated potential improvements in progression-free survival (PFS) and overall survival (OS), the diverse and immune-suppressed nature of GBM poses challenges for consistent therapeutic success. We discuss the details of these trials along with the potential mechanism of vaccine efficacy and immune activations. The findings of these trials highlight the significance of a personalized immunotherapy approach and suggest that patient stratification could significantly advance the clinical management of GBM.
Collapse
Affiliation(s)
- Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Madinah 41477, Saudi Arabia
- Health and Life Research Center, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
3
|
He X, Sun X, Shao Y. Multicellular Network-Informed Survival Model for Identification of Drug Targets of Gliomas. IEEE J Biomed Health Inform 2025; 29:1591-1601. [PMID: 37643106 DOI: 10.1109/jbhi.2023.3309825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Increasing evidence suggests that communication between tumor cells (TCs) and tumor-associated macrophages (TAMs) plays a substantial role in promoting progression of low-grade gliomas (LGG). Hence, it is becoming critical to model TAM-TC interplay and interrogate how the crosstalk affects prognosis of LGG patients. This article proposed a translational research pipeline to construct the multicellular interaction gene network (MIGN) for identification of druggable targets to develop novel therapeutic strategies. Firstly, we selected immunotherapy-related feature genes (IFGs) for TAMs and TCs using RNA-seq data of glioma mice from preclinical trials. After translating the IFGs to human genome, we constructed TAM- and TC- associated networks separately, using a training set of 524 human LGGs. Subsequently, clustering analysis was performed within each network, and the concordance measure K-index was adopted to correlate gene clusters with patient survival. The MIGN was built by combining the clusters highly associated with survival in TAM- and TC-associated networks. We then developed a MIGN-based survival model to identify prognostic signatures comprised of ligands, receptors and hub genes. An independent cohort of 172 human LGG samples was leveraged to validate predictive accuracy of the signature. The areas under time-dependent ROC curves were 0.881, 0.867, and 0.839 with respect to 1-year, 3-year, and 5-year survival rates respectively in the validation set. Furthermore, literature survey was conducted on the signature genes, and potential clinical responses to targeted drugs were evaluated for LGG patients, further highlighting potential utilities of the MIGN signature to develop novel immunotherapies to extend survival of LGG patients.
Collapse
|
4
|
Wen K, Zhu W, Luo Z, Wang W. Machine learning-based identification of histone deacetylase-associated prognostic factors and prognostic modeling for low-grade glioma. Discov Oncol 2024; 15:824. [PMID: 39714729 DOI: 10.1007/s12672-024-01713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Low-grade glioma (LGG) is a slow-growing but invasive tumor that affects brain function. Histone deacetylases (HDACs) play a critical role in gene regulation and tumor progression. This study aims to develop a prognostic model based on HDAC-related genes to aid in risk stratification and predict therapeutic responses. METHODS Expression data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify an optimal HDAC-related risk signature from 73 genes using 10 machine learning algorithms. Patients were stratified into high- and low-risk groups based on the median risk score. Prognostic accuracy was evaluated using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), were performed to explore pathways linked to the gene signature. Immune infiltration and tumor microenvironment characteristics were assessed using Single Sample Gene Set Enrichment Analysis (ssGSEA) and ESTIMATE algorithm. SubMap was applied to predict responsiveness to immune checkpoint inhibitors, and chemotherapeutic sensitivity was analyzed via the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS A prognostic model consisting of four HDAC-related genes-SP140, BAZ1B, SP100, and SIRT1-was identified. This signature displayed strong prognostic accuracy, achieving a C-index of 0.945. Individuals with LGG were systematically divided into high-risk and low-risk cohorts based on the median risk value, enabling more precise risk stratification. The survival prognosis was significantly worse in the high-risk cohort compared to the low-risk group, highlighting distinct survival trajectories. Notably, the two cohorts exhibited marked shifts in immune checkpoint gene transcriptional profiles and immune cell infiltration maps, underscoring fundamental biological differences that contribute to these differing prognoses. CONCLUSION We developed an HDAC-related four-gene prognostic model that correlates with survival, immune landscape, and therapeutic response in LGG patients. This model may guide personalized treatment strategies and improve prognostic accuracy, warranting further validation in clinical settings.
Collapse
Affiliation(s)
- Keshan Wen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weijie Zhu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Ziyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Demetz M, Krigers A, Uribe-Pacheco R, Pinggera D, Klingenschmid J, Thomé C, Freyschlag CF, Kerschbaumer J. The role of postoperative blood pressure management in early postoperative hemorrhage in awake craniotomy glioma patients. Neurosurg Rev 2024; 47:452. [PMID: 39168945 PMCID: PMC11339099 DOI: 10.1007/s10143-024-02661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Postoperative hemorrhage can severely affect the patients' neurological outcome after awake craniotomy. Higher postoperative blood pressure can increase the risk of postoperative hemorrhage. The aim of this study was to investigate the role of postoperative blood pressure and other common radiological and epidemiological features with the incidence of postoperative hemorrhage. In this retrospective analysis, we included patients who underwent awake surgery at our institution. We assessed the blood pressure both intra- and postoperatively as well as the heart rate for the first 12 h. We compared a cohort with postoperative hemorrhage, who required further treatment (surgical revision or intravenous antihypertensive therapy), with a cohort with no postoperative hemorrhage. We included 48 patients with a median age of 39 years. 9 patients (19%) required further treatment due to postoperative hemorrhage, which was surgery in 2 cases and intensive blood pressure measurements in 7 cases. However, with early treatment, no significant difference in Performance scores at follow-up could be found. Patients with postoperative hemorrhage showed significantly higher postoperative systolic blood pressure during the hours 3-12 (p < 0.05) as well as intraoperatively throughout the procedure (p < 0.05). In ROC and Youden Test, a strong impact of systolic blood pressure over 140mmHg during the early postoperative course could be shown. Postoperative hemorrhage is a rare but possible complication in awake surgery glioma patients. To avoid postoperative hemorrhage, treating physicians should aim strictly on systolic blood pressure of under 140mmHg for the postoperative course.
Collapse
Affiliation(s)
- Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Rodrigo Uribe-Pacheco
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Julia Klingenschmid
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria.
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| |
Collapse
|
6
|
Ye S, Yang B, Yang L, Wei W, Fu M, Yan Y, Wang B, Li X, Liang C, Zhao W. Stemness subtypes in lower-grade glioma with prognostic biomarkers, tumor microenvironment, and treatment response. Sci Rep 2024; 14:14758. [PMID: 38926605 PMCID: PMC11208487 DOI: 10.1038/s41598-024-65717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Our research endeavors are directed towards unraveling the stem cell characteristics of lower-grade glioma patients, with the ultimate goal of formulating personalized treatment strategies. We computed enrichment stemness scores and performed consensus clustering to categorize phenotypes. Subsequently, we constructed a prognostic risk model using weighted gene correlation network analysis (WGCNA), random survival forest regression analysis as well as full subset regression analysis. To validate the expression differences of key genes, we employed experimental methods such as quantitative Polymerase Chain Reaction (qPCR) and assessed cell line proliferation, migration, and invasion. Three subtypes were assigned to patients diagnosed with LGG. Notably, Cluster 2 (C2), exhibiting the poorest survival outcomes, manifested characteristics indicative of the subtype characterized by immunosuppression. This was marked by elevated levels of M1 macrophages, activated mast cells, along with higher immune and stromal scores. Four hub genes-CDCA8, ORC1, DLGAP5, and SMC4-were identified and validated through cell experiments and qPCR. Subsequently, these validated genes were utilized to construct a stemness risk signature. Which revealed that Lower-Grade Glioma (LGG) patients with lower scores were more inclined to demonstrate favorable responses to immune therapy. Our study illuminates the stemness characteristics of gliomas, which lays the foundation for developing therapeutic approaches targeting CSCs and enhancing the efficacy of current immunotherapies. By identifying the stemness subtype and its correlation with prognosis and TME patterns in glioma patients, we aim to advance the development of personalized treatments, enhancing the ability to predict and improve overall patient prognosis.
Collapse
Affiliation(s)
- Shengda Ye
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurosurgery, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yan
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Hospital of Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Clinical Study Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, China.
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Zhang T, Zhang Q, He X, Lu Y, Shao A, Sun X, Shao Y. Identification of Key Molecular Pathways and Associated Genes as Targets to Overcome Radiotherapy Resistance Using a Combination of Radiotherapy and Immunotherapy in Glioma Patients. Int J Mol Sci 2024; 25:3076. [PMID: 38474320 PMCID: PMC10931693 DOI: 10.3390/ijms25053076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Recent mechanistic studies have indicated that combinations of radiotherapy (RT) plus immunotherapy (via CSF-1R inhibition) can serve as a strategy to overcome RT resistance and improve the survival of glioma mice. Given the high mortality rate for glioma, including low-grade glioma (LGG) patients, it is of critical importance to investigate the mechanism of the combination of RT and immunotherapy and further translate the mechanism from mouse studies to improve survival of RT-treated human glioma patients. Using the RNA-seq data from a glioma mouse study, 874 differentially expressed genes (DEGs) between the group of RT-treated mice at glioma recurrence and the group of mice with combination treatment (RT plus CSF-1R inhibition) were translated to the human genome to identify significant molecular pathways using the KEGG enrichment analysis. The enrichment analysis yields statistically significant signaling pathways, including the phosphoinositide 3-kinase (PI3K)/AKT pathway, Hippo pathway, and Notch pathway. Within each pathway, a candidate gene set was selected by Cox regression models as genetic biomarkers for resistance to RT and response to the combination of RT plus immunotherapies. Each Cox model is trained using a cohort of 295 RT-treated LGG patients from The Cancer Genome Atlas (TCGA) database and validated using a cohort of 127 RT-treated LGG patients from the Chinese Glioma Genome Atlas (CGGA) database. A four-DEG signature (ITGB8, COL9A3, TGFB2, JAG1) was identified from the significant genes within the three pathways and yielded the area under time-dependent ROC curve AUC = 0.86 for 5-year survival in the validation set, which indicates that the selected DEGs have strong prognostic value and are potential intervention targets for combination therapies. These findings may facilitate future trial designs for developing combination therapies for glioma patients.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA; (T.Z.); (Q.Z.); (Y.L.)
| | - Qiao Zhang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA; (T.Z.); (Q.Z.); (Y.L.)
| | - Xinwei He
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China;
| | - Yuting Lu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA; (T.Z.); (Q.Z.); (Y.L.)
| | - Andrew Shao
- Center of Data Science, New York University, New York, NY 10011, USA;
| | - Xiaoqiang Sun
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China;
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA; (T.Z.); (Q.Z.); (Y.L.)
| |
Collapse
|
8
|
Saijo A, Ogino H, Butowski NA, Tedesco MR, Gibson D, Watchmaker PB, Okada K, Wang AS, Shai A, Salazar AM, Molinaro AM, Rabbitt JE, Shahin M, Perry A, Clarke JL, Taylor JW, Daras M, Oberheim Bush NA, Hervey-Jumper SL, Phillips JJ, Chang SM, Hilf N, Mayer-Mokler A, Keler T, Berger MS, Okada H. A combinatory vaccine with IMA950 plus varlilumab promotes effector memory T-cell differentiation in the peripheral blood of patients with low-grade gliomas. Neuro Oncol 2024; 26:335-347. [PMID: 37758193 PMCID: PMC10836773 DOI: 10.1093/neuonc/noad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.
Collapse
Affiliation(s)
- Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, Tokushima, Japan
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Meghan R Tedesco
- Department of Neurology, University of California, San Francisco, CA, USA
| | - David Gibson
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Albert S Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | | | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Jane E Rabbitt
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Maryam Shahin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Mariza Daras
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Andrea Mayer-Mokler
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Tibor Keler
- Celldex Theraepeutics, Inc., Hampton, NJ, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
9
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Bao H, Ai S, Wang G, Yi L, Lai J, Wang S, Lv Z, Li C, Liu Q, Zhao X, Wu C, Liu C, Mi S, Sun X, Hao C, Liang P. Intraoperative radiotherapy in recurrent IDH-wildtype glioblastoma with gross total resection: A single-center retrospective study. Clin Neurol Neurosurg 2024; 236:108103. [PMID: 38199118 DOI: 10.1016/j.clineuro.2023.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Isocitrate dehydrogenase-wildtype (IDHwt) glioblastoma (GBM) is one of the most aggressive primary brain tumors. The recurrence of GBM is almost inevitable. As an adjuvant option to surgery, intraoperative radiotherapy (IORT) is gaining increasing attention in the treatment of glioma. This study is aimed to evaluate the therapeutic efficacy of IORT on recurrent IDHwt GBM. METHODS In total, 34 recurrent IDHwt GBM patients who received a second surgery were included in the analysis (17 in the surgery group and 17 in the surgery + IORT group). RESULTS The progression-free survival and overall survival after the second surgery were defined as PFS2 and OS2, respectively. The median PFS2 was 7.3 months (95% CI: 6.3-10.5) and 10.6 months (95% CI: 9.3-14.6) for those patients who received surgery and surgery + IORT, respectively. Patients in the surgery + IORT group also had a longer OS2 (12.8 months, 95% CI: 11.4-17.2) than those in the surgery group (9.3 months, 95% CI: 8.9-12.9). The Kaplan-Meier survival curves, analyzed by log-rank test, revealed a statistically significant difference in PFS2 and OS2 between both groups, suggesting that IORT plays an active role in the observed benefits for PFS2 and OS2. The effects of IORT on PFS2 and OS2 were further confirmed by multivariate Cox hazards regression analysis. Two patients in the surgery group developed distant glioma metastases, and no radiation-related complications were observed in the IORT group. CONCLUSIONS This study suggests that low-dose IORT may improve the prognosis of recurrent IDHwt GBM patients. Future prospective large-scale studies are needed to validate the efficacy and safety of IORT.
Collapse
Affiliation(s)
- Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siqi Ai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiacheng Lai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuai Wang
- Department of Imaging Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xinyu Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chou Wu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chang Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shan Mi
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiaoyang Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chuncheng Hao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
11
|
Mendes Serrão E, Klug M, Moloney BM, Jhaveri A, Lo Gullo R, Pinker K, Luker G, Haider MA, Shinagare AB, Liu X. Current Status of Cancer Genomics and Imaging Phenotypes: What Radiologists Need to Know. Radiol Imaging Cancer 2023; 5:e220153. [PMID: 37921555 DOI: 10.1148/rycan.220153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Ongoing discoveries in cancer genomics and epigenomics have revolutionized clinical oncology and precision health care. This knowledge provides unprecedented insights into tumor biology and heterogeneity within a single tumor, among primary and metastatic lesions, and among patients with the same histologic type of cancer. Large-scale genomic sequencing studies also sparked the development of new tumor classifications, biomarkers, and targeted therapies. Because of the central role of imaging in cancer diagnosis and therapy, radiologists need to be familiar with the basic concepts of genomics, which are now becoming the new norm in oncologic clinical practice. By incorporating these concepts into clinical practice, radiologists can make their imaging interpretations more meaningful and specific, facilitate multidisciplinary clinical dialogue and interventions, and provide better patient-centric care. This review article highlights basic concepts of genomics and epigenomics, reviews the most common genetic alterations in cancer, and discusses the implications of these concepts on imaging by organ system in a case-based manner. This information will help stimulate new innovations in imaging research, accelerate the development and validation of new imaging biomarkers, and motivate efforts to bring new molecular and functional imaging methods to clinical radiology. Keywords: Oncology, Cancer Genomics, Epignomics, Radiogenomics, Imaging Markers Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Eva Mendes Serrão
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Maximiliano Klug
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Brian M Moloney
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Aaditeya Jhaveri
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Roberto Lo Gullo
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Katja Pinker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Gary Luker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Masoom A Haider
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Atul B Shinagare
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Xiaoyang Liu
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| |
Collapse
|
12
|
Shakila PB, Hirad AH, Alarfaj AA, Hussein-Al-Ali SH, Mulugeta B. Precise Construction of Dual-Promising Anticancer Drugs Associated with Gold Nanomaterials on Glioma Cancer Cells. Bioinorg Chem Appl 2023; 2023:8892099. [PMID: 37920234 PMCID: PMC10620031 DOI: 10.1155/2023/8892099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Multiple chemodrugs with nanotechnology have proven to be an effective cancer treatment technique. When taken combined, cabazitaxel (CTX) and cisplatin (PT) have more excellent cytotoxic effects than drugs used alone in the chemotherapy of several different cancers. However, several severe side effects are associated with using these chemotherapy drugs in cancer patients. Gold nanomaterials (AuNMs) are promising as drug carriers because of their small diameter, easy surface modifications, good biocompatibility, and strong cell penetration. This work aimed to determine the CTX and PT encapsulated with AuNMs against human glioma U87 cancer cells. The fabrication of the AuNMs achieved a negative surface charge, polydispersity index, and the mean sizes. The combined cytotoxic effect of CTX and PT bound to AuNMs was greater than that of either drug alone when tested on U87 cells. The half inhibitory concentration (IC50) values for free PT were 54.7 μg/mL (at 24 h) and 4.8 g μg/mL (at 72 h). Results acquired from the MTT assay show cell growth decreases time- and concentration-dependent AuNMs, free CTX, free PT, and AuNMs@CTX/PT-induced cytotoxicity and, ultimately, the cell death of U87 cells via apoptosis. The biochemical apoptosis staining techniques investigated the cells' morphological changes of the cells (acridine orange and ethidium bromide (AO-EB) and nuclear staining (DAPI) techniques). The AO-EB and nuclear staining results reveal that the NPs effectively killed cancer cells. Furthermore, the flow cytometry analysis examined the mode of cell death. Therefore, AuNMs@CTX/PT has excellent potential in the cancer therapy of different cancer cells.
Collapse
Affiliation(s)
- P. Baby Shakila
- Department of Biochemistry, Vivekananda College of Arts and Sciences for Women, Tiruchengode 637205, Tamil Nadu, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Beza Mulugeta
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Dire Dawa, P.O. Box 128, Ethiopia
| |
Collapse
|
13
|
Ragnhildstveit A, Li C, Zimmerman MH, Mamalakis M, Curry VN, Holle W, Baig N, Uğuralp AK, Alkhani L, Oğuz-Uğuralp Z, Romero-Garcia R, Suckling J. Intra-operative applications of augmented reality in glioma surgery: a systematic review. Front Surg 2023; 10:1245851. [PMID: 37671031 PMCID: PMC10476869 DOI: 10.3389/fsurg.2023.1245851] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Background Augmented reality (AR) is increasingly being explored in neurosurgical practice. By visualizing patient-specific, three-dimensional (3D) models in real time, surgeons can improve their spatial understanding of complex anatomy and pathology, thereby optimizing intra-operative navigation, localization, and resection. Here, we aimed to capture applications of AR in glioma surgery, their current status and future potential. Methods A systematic review of the literature was conducted. This adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, and Scopus electronic databases were queried from inception to October 10, 2022. Leveraging the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) framework, study eligibility was evaluated in the qualitative synthesis. Data regarding AR workflow, surgical application, and associated outcomes were then extracted. The quality of evidence was additionally examined, using hierarchical classes of evidence in neurosurgery. Results The search returned 77 articles. Forty were subject to title and abstract screening, while 25 proceeded to full text screening. Of these, 22 articles met eligibility criteria and were included in the final review. During abstraction, studies were classified as "development" or "intervention" based on primary aims. Overall, AR was qualitatively advantageous, due to enhanced visualization of gliomas and critical structures, frequently aiding in maximal safe resection. Non-rigid applications were also useful in disclosing and compensating for intra-operative brain shift. Irrespective, there was high variance in registration methods and measurements, which considerably impacted projection accuracy. Most studies were of low-level evidence, yielding heterogeneous results. Conclusions AR has increasing potential for glioma surgery, with capacity to positively influence the onco-functional balance. However, technical and design limitations are readily apparent. The field must consider the importance of consistency and replicability, as well as the level of evidence, to effectively converge on standard approaches that maximize patient benefit.
Collapse
Affiliation(s)
- Anya Ragnhildstveit
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Psychiatry, University of Cambridge, Cambridge, England
| | - Chao Li
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England
| | | | - Michail Mamalakis
- Department of Psychiatry, University of Cambridge, Cambridge, England
| | - Victoria N. Curry
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Willis Holle
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Physics and Astronomy, The University of Utah, Salt Lake City, UT, United States
| | - Noor Baig
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | | | - Layth Alkhani
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Biology, Stanford University, Stanford, CA, United States
| | | | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, England
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, England
| |
Collapse
|
14
|
Tran S, Thomas A, Aliouat I, Karachi C, Lozano F, Mokhtari K, Dehais C, Feuvret L, Carpentier C, Giry M, Doukani A, Lerond J, Marie Y, Sanson M, Idbaih A, Carpentier A, Hoang-Xuan K, Touat M, Capelle L, Bielle F. A threshold for mitotic activity and post-surgical residual volume defines distinct prognostic groups for astrocytoma IDH-mutant. Neuropathol Appl Neurobiol 2023; 49:e12928. [PMID: 37503540 DOI: 10.1111/nan.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
AIMS The distinction between CNS WHO grade 2 and grade 3 is instrumental in choosing between observational follow-up and adjuvant treatment for resected astrocytomas IDH-mutant. However, the criteria of CNS WHO grade 2 vs 3 have not been updated since the pre-IDH era. METHODS Maximal mitotic activity in consecutive high-power fields corresponding to 3 mm2 was examined for 118 lower-grade astrocytomas IDH-mutant. The prognostic value for time-to-treatment (TTT) and overall survival (OS) of mitotic activity and other putative prognostic factors (including age, performance status, pre-surgical tumour volume, multilobar involvement, post-surgical residual tumour volume and midline involvement) was assessed for tumours with ATRX loss and the absence of CDKN2A homozygous deletion or CDK4 amplification, contrast enhancement, histological necrosis and microvascular proliferation. RESULTS Seventy-one per cent of the samples had <6 mitoses per 3 mm2 . Mitotic activity, residual volume and multilobar involvement were independent prognostic factors of TTT. The threshold of ≥6 mitoses per 3 mm2 identified patients with a shorter TTT (median 18.5 months). A residual volume ≥1 cm3 also identified patients with a shorter TTT (median 24.5 months). The group defined by <6 mitoses per 3 mm2 and a residual volume <1 cm3 had the longest TTT (median 73 months) and OS (100% survival at 7 years). These findings were confirmed in a validation cohort of 52 tumours. CONCLUSIONS Mitotic activity and post-surgical residual volume can be combined to evaluate the prognosis for patients with resected astrocytomas IDH-mutant. Patients with <6 mitoses per 3 mm2 and a residual volume <1 cm3 were the best candidates for observational follow-up.
Collapse
Affiliation(s)
- Suzanne Tran
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
| | - Alice Thomas
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Ilyes Aliouat
- Department of Neurosurgery, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Fernando Lozano
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Karima Mokhtari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
| | - Caroline Dehais
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Loïc Feuvret
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Radiotherapy, Paris, France
| | - Catherine Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Marine Giry
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Abiba Doukani
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique Pitié-Salpêtrière, P3S, Paris, France
| | - Julie Lerond
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Sorbonne Université, AP-HP, Paris, France
| | - Yannick Marie
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Marc Sanson
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
- Sorbonne Université, AP-HP, Paris, France
- Department of Neuropathology, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Alexandre Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Khê Hoang-Xuan
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Mehdi Touat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Laurent Capelle
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Franck Bielle
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
- Sorbonne Université, AP-HP, Paris, France
- Department of Neuropathology, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
15
|
Wang B, Tian P, Sun Q, Zhang H, Han L, Zhu B. A novel, effective machine learning-based RNA editing profile for predicting the prognosis of lower-grade gliomas. Heliyon 2023; 9:e18075. [PMID: 37483735 PMCID: PMC10362151 DOI: 10.1016/j.heliyon.2023.e18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Patients with low-grade glioma (LGG) may survive for long time periods, but their tumors often progress to higher-grade lesions. Currently, no cure for LGG is available. A-to-I RNA editing accounts for nearly 90% of all RNA editing events in humans and plays a role in tumorigenesis in various cancers. However, little is known regarding its prognostic role in LGG. On the basis of The Cancer Genome Atlas (TCGA) data, we used LASSO and univariate Cox regression to construct an RNA editing site signature. The results derived from the TCGA dataset were further validated with Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA) datasets. Five machine learning algorithms (Decision Trees C5.0, XGboost, GBDT, Lightgbm, and Catboost) were used to confirm the prognosis associated with the RNA editing site signature. Finally, we explored immune function, immunotherapy, and potential therapeutic agents in the high- and low-risk groups by using multiple biological prediction websites. A total of 22,739 RNA editing sites were identified, and a signature model consisting of four RNA editing sites (PRKCSH|chr19:11561032, DSEL|chr18:65174489, UGGT1|chr2:128952084, and SOD2|chr6:160101723) was established. Cox regression analysis indicated that the RNA editing signature was an independent prognostic factor, according to the ROC curve (AUC = 0.823), and the nomogram model had good predictive power (C-index = 0.824). In addition, the predictive ability of the RNA editing signature was confirmed with the machine learning model. The sensitivity of PCI-34051 and Elephantin was significantly higher in the high-risk group than the low-risk group, thus potentially providing a marker to predict the effects of lung cancer drug treatment. RNA editing may serve as a novel survival prediction tool, thus offering hope for developing editing-based therapeutic strategies to combat LGG progression. In addition, this tool may help optimize survival risk assessment and individualized care for patients with low-grade gliomas.
Collapse
Affiliation(s)
- Boshen Wang
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Peijie Tian
- Department of Pathology, Weifang Medical University, China
| | - Qianyu Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hengdong Zhang
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
| | - Lei Han
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
| | - Baoli Zhu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
16
|
Xiao F, Zhu H, Guo Y, Zhang Z, Sun G, Huang K, Guo H, Hu G. DUSP10 is a novel immune-related biomarker connected with survival and cellular proliferation in lower-grade glioma. Aging (Albany NY) 2023; 15:5673-5697. [PMID: 37387540 PMCID: PMC10333081 DOI: 10.18632/aging.204821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVE The role of dual-specificity phosphatase 10 (DUSP10) has been investigated in several types of cancer. Nevertheless, the underlying function of DUSP10 in lower-grade glioma (LGG) remains undetermined. METHODS We entirely determined the expression features and prognostic significance of DUSP10 in numerous tumors by implementing a pan-cancer analysis. Adjacently, we thoroughly inspected the correlation between DUSP10 expression and clinicopathologic features, prognosis, biological processes, immune traits, gene variations, and treatment responses based on the expression features in LGG. In vitro studies were conducted to detect the underlying functions of DUSP10 in LGG. RESULTS Unconventionally boosted DUSP10 expression and higher DUSP10 expression correlated with poorer prognosis were discovered in various tumors, including LGG. Fortunately, DUSP10 expression was proven to be an independent prognostic indicator of patients with LGG. Additionally, DUSP10 expression was tightly linked to the immune modulation, gene mutations, and response to immunotherapy/chemotherapy in LGG patients. In vitro studies illustrated that the DUSP10 was abnormally increased and pivotal for cell proliferation in LGG. CONCLUSIONS Collectively, we verified that DUSP10 was an independent prognostic indicator and may become a novelty target of targeted therapy of LGG.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yun Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Gufeng Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
17
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
18
|
Tang G, Peng J, Huo L, Yin W. An N6-methyladenosine regulation- and mRNAsi-related prognostic index reveals the distinct immune microenvironment and immunotherapy responses in lower-grade glioma. BMC Bioinformatics 2023; 24:225. [PMID: 37264314 DOI: 10.1186/s12859-023-05328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is involved in tumorigenesis and progression as well as closely correlated with stem cell differentiation and pluripotency. Moreover, tumor progression includes the acquisition of stemness characteristics and accumulating loss of differentiation phenotype. Therefore, we integrated m6A modification and stemness indicator mRNAsi to classify patients and predict prognosis for LGG. METHODS We performed consensus clustering, weighted gene co-expression network analysis, and least absolute shrinkage and selection operator Cox regression analysis to identify an m6A regulation- and mRNAsi-related prognostic index (MRMRPI). Based on this prognostic index, we also explored the differences in immune microenvironments between high- and low-risk populations. Next, immunotherapy responses were also predicted. Moreover, single-cell RNA sequencing data was further used to verify the expression of these genes in MRMRPI. At last, the tumor-promoting and tumor-associated macrophage polarization roles of TIMP1 in LGG were validated by in vitro experiments. RESULTS Ten genes (DGCR10, CYP2E1, CSMD3, HOXB3, CABP4, AVIL, PTCRA, TIMP1, CLEC18A, and SAMD9) were identified to construct the MRMRPI, which was able to successfully classify patients into high- and low-risk group. Significant differences in prognosis, immune microenvironment, and immunotherapy responses were found between distinct groups. A nomogram integrating the MRMRPI and other prognostic factors were also developed to accurately predict prognosis. Moreover, in vitro experiments illustrated that inhibition of TIMP1 could inhibit the proliferation, migration, and invasion of LGG cells and also inhibit the polarization of tumor-associated macrophages. CONCLUSION These findings provide novel insights into understanding the interactions of m6A methylation regulation and tumor stemness on LGG development and contribute to guiding more precise immunotherapy strategies.
Collapse
Affiliation(s)
- Guihua Tang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University), Changsha, 410005, Hunan Province, People's Republic of China.
| | - Jianqiao Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University), Changsha, 410005, Hunan Province, People's Republic of China
| | - Longwei Huo
- Department of Neurosurgery, Yulin First Hospital Affiliated to Xi'an Jiao Tong University, Yulin, 719000, People's Republic of China
| | - Wen Yin
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
19
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
20
|
Kocatürk B. Identification of thioredoxin domain containing family members' expression pattern and prognostic value in diffuse gliomas via in silico analysis. Cancer Med 2023; 12:3830-3844. [PMID: 36106447 PMCID: PMC9939227 DOI: 10.1002/cam4.5169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gliomas are the most prevalent primary tumors of the central nervous system. Their aggressive nature and the obstacles arising during therapy highlights the importance of finding new prognostic markers and therapy targets for gliomas. TXNDC genes are members of the thioredoxin superfamily and were shown to play a role in redox homeostasis, protein folding, electron transfer and also acting as cellular adapters. The well known contribution of these processes in cancer progression prompted us to investigate if TXNDC family members may also play a role in carcinogenesis, in particular diffuse gliomas. METHODS The present study used in silico analysis tools GEPIA, UCSC Xena, Gliovis, cBioPortal, and Ivy GAP to evaluate the expression pattern, prognostic value and clinical significance of TXNDC family members in diffuse gliomas. RESULTS Our analysis showed that TXNDC family members' expression pattern differ between tumors and healthy tissues and among tumors with different grades. The detailed analysis of TXNDC5 in glioma pathogenesis revealed that TXNDC5 expression is associated with more aggressive clinical and molecular features and poor therapy success both in LGG and GBM samples. Kaplan-Meier survival curves represented a worse prognosis for patients with leveated TXNDC5 levels in LGG and all grade glioma patients. The levels of TXNDC5 was shown to be possibly regulated by hypoxia-ER stress axis and a potential mechanism for TXNDC5-driven glioma progression was found to be extracellular matrix (ECM) production which is known to promote tumor aggressiveness. CONCLUSIONS Our results uncovered the previously unknown role of TXNDC family members in glioma pathogenesis and showed that TXNDC5 levels could serve as a predictor of clinical outcome and therapy success and may very well be used for targeted therapy.
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
21
|
Xie M, Wang X, Duan Z, Luan G. Low-grade epilepsy-associated neuroepithelial tumors: Tumor spectrum and diagnosis based on genetic alterations. Front Neurosci 2023; 16:1071314. [PMID: 36699536 PMCID: PMC9868944 DOI: 10.3389/fnins.2022.1071314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Brain tumors can always result in seizures when involving the cortical neurons or their circuits, and they were found to be one of the most common etiologies of intractable focal seizures. The low-grade epilepsy-associated neuroepithelial tumors (LEAT), as a special group of brain tumors associated with seizures, share common clinicopathological features, such as seizure onsets at a young age, a predilection for involving the temporal lobe, and an almost benign course, including a rather slow growth pattern and thus a long-term history of seizures. Ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) are the typical representatives of LEATs. Surgical treatments with complete resection of tumors and related epileptogenic zones are deemed the optimal way to achieve postoperative seizure control and lifetime recurrence-free survival in patients with LEATs. Although the term LEAT was originally introduced in 2003, debates on the tumor spectrum and the diagnosis or classification of LEAT entities are still confusing among epileptologists and neuropathologists. In this review, we would further discuss these questions, especially based on the updated classification of central nervous system tumors in the WHO fifth edition and the latest molecular genetic findings of tumor entities in LEAT entities.
Collapse
Affiliation(s)
- Mingguo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,Chinese Institute for Brain Research, Beijing, China,*Correspondence: Guoming Luan,
| |
Collapse
|
22
|
Systematic Analysis of a Pyroptosis-Related Signature to Predict the Prognosis and Immune Microenvironment of Lower-Grade Glioma. Cells 2022; 11:cells11243980. [PMID: 36552744 PMCID: PMC9776729 DOI: 10.3390/cells11243980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Current treatments for lower-grade glioma (LGG) do not effectively improve life expectancy rates, and this is a major global health concern. Improving our knowledge of this disease will ultimately help to improve prevention, accurate prognosis, and treatment strategies. Pyroptosis is an inflammatory form of regulated cell death, which plays an important role in tumor progression and occurrence. There is still a lack of effective markers to evaluate the prognosis of LGG patients. We collected paraffin-embedded tissue samples and prognostic information from 85 patients with low-grade gliomas and fabricated them into a tissue microarray. Combining data from public databases, we explored the relationship between pyroptosis-related genes (PRGs) and the prognoses of patients with LGG and investigated their correlations with the tumor microenvironment (TME) by means of machine learning, single-cell, immunohistochemical, nomogram, GSEA, and Cox regression analyses. We developed a six-gene PRG-based prognostic model, and the results have identified CASP4 as an effective marker for LGG prognosis predictions. Furthermore, the effects on immune cell infiltration may also provide guidance for future immunotherapy strategies.
Collapse
|
23
|
Scherschinski L, Jubran JH, Shaftel KA, Furey CG, Farhadi DS, Benner D, Hendricks BK, Smith KA. Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Management of Low-Grade Gliomas and Radiation Necrosis: A Single-Institution Case Series. Brain Sci 2022; 12:brainsci12121627. [PMID: 36552087 PMCID: PMC9775146 DOI: 10.3390/brainsci12121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) has emerged as a minimally invasive treatment modality for ablation of low-grade glioma (LGG) and radiation necrosis (RN). OBJECTIVE To evaluate the efficacy, safety, and survival outcomes of patients with radiographically presumed recurrent or newly diagnosed LGG and RN treated with LITT. METHODS The neuro-oncological database of a quaternary center was reviewed for all patients who underwent LITT for management of LGG between 1 January 2013 and 31 December 2020. Clinical data including demographics, lesion characteristics, and clinical and radiographic outcomes were collected. Kaplan-Meier analyses comprised overall survival (OS) and progression-free survival (PFS). RESULTS Nine patients (7 men, 2 women; mean [SD] age 50 [16] years) were included. Patients underwent LITT at a mean (SD) of 11.6 (8.5) years after diagnosis. Two (22%) patients had new lesions on radiographic imaging without prior treatment. In the other 7 patients, all (78%) had surgical resection, 6 (67%) had intensity-modulated radiation therapy and chemotherapy, respectively, and 4 (44%) had stereotactic radiosurgery. Two (22%) patients had lesions that were wild-type IDH1 status. Volumetric assessment of preoperative T1-weighted contrast-enhancing and T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences yielded mean (SD) lesion volumes of 4.1 (6.5) cm3 and 26.7 (27.9) cm3, respectively. Three (33%) patients had evidence of radiographic progression after LITT. The pooled median (IQR) PFS for the cohort was 52 (56) months, median (IQR) OS after diagnosis was 183 (72) months, and median (IQR) OS after LITT was 52 (60) months. At the time of the study, 2 (22%) patients were deceased. CONCLUSIONS LITT is a safe and effective treatment option for management of LGG and RN, however, there may be increased risk of permanent complications with treatment of deep-seated subcortical lesions.
Collapse
Affiliation(s)
- Lea Scherschinski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +1-602-693-5883
| | - Jubran H. Jubran
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kelly A. Shaftel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Charuta G. Furey
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Dara S. Farhadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Dimitri Benner
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Benjamin K. Hendricks
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kris A. Smith
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
24
|
Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol 2022; 34:705-712. [PMID: 36093876 DOI: 10.1097/cco.0000000000000902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Oncology Unit, Pisa University Hospital
| | - Milena Rizzo
- Noncoding RNA group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa
| | | | | | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
25
|
Identification of Prognostic Signature of Necroptosis-Related lncRNAs and Molecular Subtypes in Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3440586. [PMID: 36110575 PMCID: PMC9468935 DOI: 10.1155/2022/3440586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Background In tumor progression and epigenetic regulation, long non-coding RNA (lncRNA) and necroptosis are crucial regulators. However, in glioma microenvironment, the role of necroptosis-related lncRNAs (NRLs) remains unknown. Method In this study, the RNA-seq and clinical annotation of glioma patients were analyzed using the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. To investigate prognosis and tumor microenvironment of NRLs in gliomas, we conducted a prediction model based on the training cohort. The accuracy of the model was verified in the verification cohort. Results A signature composed of 13 NRLs was identified, and all glioma patients were divided into two groups. We found that each group has unique survival outcomes, biological behaviors, and immune infiltrating status. The necroptosis-related lncRNA signature (NRLS) model was found to be an independent risk factor in multivariate Cox analysis. Immunosuppressive microenvironment was positively correlated with the high-risk group. Due to significantly different IC50 between risk groups, NRLS could be used as a guide for chemotherapeutic treatment. Further, the entire cohort was divided into two clusters depending on NRLs. Consensus clustering method and the risk scoring system were basically similar. Survival probability was higher in Cluster 2, while Cluster 1 has stronger immunologic infiltration. Conclusion The predictive signature could be a prognostic factor independently and serve to detect the role of NRLs in glioma immunotherapy response.
Collapse
|
26
|
Hou Y, Li Y, Li Q, Yu Y, Tang J. Full-course resection control strategy in glioma surgery using both intraoperative ultrasound and intraoperative MRI. Front Oncol 2022; 12:955807. [PMID: 36091111 PMCID: PMC9453394 DOI: 10.3389/fonc.2022.955807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIntraoperative ultrasound(iUS) and intraoperative MRI (iMRI) are effective ways to perform resection control during glioma surgery. However, most published studies employed only one modality. Few studies have used both during surgery. How to combine these two techniques reasonably, and what advantages they could have for glioma surgery are still open questions.MethodsWe retrospectively reviewed a series of consecutive patients who underwent initial surgical treatment of supratentorial gliomas in our center. We utilized a full-course resection control strategy to combine iUS and iMRI: IUS for pre-resection assessment and intermediate resection control; iMRI for final resection control. The basic patient characteristics, surgical results, iMRI/iUS findings, and their impacts on surgical procedures were evaluated and reported.ResultsA total of 40 patients were included. The extent of resection was 95.43 ± 10.37%, and the gross total resection rate was 72.5%. The median residual tumor size was 6.39 cm3 (range 1.06–16.23 cm3). 5% (2/40) of patients had permanent neurological deficits after surgery. 17.5% (7/40) of patients received further resection after the first iMRI scan, resulting in four (10%) more patients achieving gross total resection. The number of iMRI scans per patient was 1.18 ± 0.38. The surgical time was 4.5 ± 3.6 hours. The pre-resection iUS scan revealed that an average of 3.8 borders of the tumor were beside sulci in 75% (30/40) patients. Intermediate resection control was utilized in 67.5% (27/40) of patients. In 37.5% (15/40) of patients, the surgical procedures were changed intraoperatively based on the iUS findings. Compared with iMRI, the sensitivity and specificity of iUS for residual tumors were 46% and 96%, respectively.ConclusionThe full-course resection control strategy by combining iUS and iMRI could be successfully implemented with good surgical results in initial glioma surgeries. This strategy might stabilize resection control quality and provide the surgeon with more intraoperative information to tailor the surgical strategy. Compared with iMRI-assisted glioma surgery, this strategy might improve efficiency by reducing the number of iMRI scans and shortening surgery time.
Collapse
Affiliation(s)
- Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qiongge Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jie Tang,
| |
Collapse
|
27
|
Wang F, Tao Z, Tian Z, Jin J, Dong J, Dai Y, Yu W, Tang B, Hu S. CCR5 as a Prognostic Factor in Lower-Grade Glioma is Involved in the Remodeling of the Tumor Microenvironment. Front Genet 2022; 13:874896. [PMID: 35865011 PMCID: PMC9294513 DOI: 10.3389/fgene.2022.874896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lower-grade gliomas (LGGs) carry a high risk of malignant transformation, leading to severe neurologic deterioration and ultimately, death. The tumor microenvironment (TME) plays an essential role in tumor maintenance, progression, and immunotherapy resistance. Therefore, the LGG TME deserves comprehensive exploration for a novel therapeutic target.Methods: The ESTIMATE algorithm was used to estimate infiltrating stromal and immune cells of LGG patients obtained from the Cancer Genome Atlas (TCGA) database. Kaplan–Meier analysis was performed to classify survival differences. TME-related differentially expressed genes were identified between the low- and high-immune/stromal groups. Hub genes were screened by constructing protein–protein interaction networks and performing the Cox regression analysis. Differential analysis, survival analysis, gene set enrichment analysis, and clinical relevance analysis specific to hub genes were evaluated by using the TCGA and the Chinese Glioma Genome Atlas datasets, and the results were validated by qRT-PCR, Western blotting, and immunohistochemistry in tissues from LGG patients.Results: The immune and stromal components in TME were negatively related to patient prognosis. Differentially expressed genes sharing immune score and stromal score were mainly involved in the immune response. C-C chemokine receptor type 5 (CCR5), as only a hub gene, was significantly higher in LGG patients than normal patients and negatively correlated with the prognosis of patients. High-expression CCR5 was positively related to immune-related and tumor progression pathways. CCR5 protein expression was higher in LGG with isocitrate dehydrogenase wildtype. Validated results showed that CCR5 was upregulated in LGG tissues at mRNA and protein levels and could affect immune cell infiltration. These results suggested that CCR5 was a potential indicator for the status of TME.Conclusion: Glioma cells remodel the immune microenvironment through the high expression of CCR5 and lead to a poor prognosis in patients with LGG. The inhibition of CCR5 may contribute to the efficacy of LGG immunotherapy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhennan Tao
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhen Tian
- Department of Minimally Invasive Interventional Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yuxiang Dai
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wanli Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Wanli Yu, ; Bin Tang, ; Shaoshan Hu,
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Wanli Yu, ; Bin Tang, ; Shaoshan Hu,
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wanli Yu, ; Bin Tang, ; Shaoshan Hu,
| |
Collapse
|
28
|
Tan S, Spear R, Zhao J, Sun X, Wang P. Comprehensive Characterization of a Novel E3-Related Gene Signature With Implications in Prognosis and Immunotherapy of Low-Grade Gliomas. Front Genet 2022; 13:905047. [PMID: 35832194 PMCID: PMC9271851 DOI: 10.3389/fgene.2022.905047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Gliomas, a type of primary brain tumor, have emerged as a threat to global mortality due to their high heterogeneity and mortality. A low-grade glioma (LGG), although less aggressive compared with glioblastoma, still exhibits high recurrence and malignant progression. Ubiquitination is one of the most important posttranslational modifications that contribute to carcinogenesis and cancer recurrence. E3-related genes (E3RGs) play essential roles in the process of ubiquitination. Yet, the biological function and clinical significance of E3RGs in LGGs need further exploration. In this study, differentially expressed genes (DEGs) were screened by three differential expression analyses of LGG samples from The Cancer Genome Atlas (TCGA) database. DEGs with prognostic significance were selected by the univariate Cox regression analysis and log-rank statistical test. The LASSO-COX method was performed to identify an E3-related prognostic signature consisting of seven genes AURKA, PCGF2, MAP3K1, TRIM34, PRKN, TLE3, and TRIM17. The Chinese Glioma Genome Atlas (CGGA) dataset was used as the validation cohort. Kaplan–Meier survival analysis showed that LGG patients in the low-risk group had significantly higher overall survival time than those in the high-risk group in both TCGA and CGGA cohorts. Furthermore, multivariate Cox regression analysis revealed that the E3RG signature could be used as an independent prognostic factor. A nomogram based on the E3RG signature was then established and provided the prediction of the 1-, 3-, and 5-year survival probability of patients with LGGs. Moreover, DEGs were analyzed based on the risk signature, on which function analyses were performed. GO and KEGG analyses uncovered gene enrichment in extracellular matrix–related functions and immune-related biological processes in the high-risk group. GSEA revealed high enrichment in pathways that promote tumorigenesis and progression in the high-risk group. Furthermore, ESTIMATE algorithm analysis showed a significant difference in immune and stroma activity between high- and low-risk groups. Positive correlations between the risk signature and the tumor microenvironment immune cell infiltration and immune checkpoint molecules were also observed, implying that patients with the high-risk score may have better responses to immunotherapy. Overall, our findings might provide potential diagnostic and prognostic markers for LGG patients and offer meaningful insight for individualized treatment.
Collapse
Affiliation(s)
- Shichuan Tan
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Ryan Spear
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Juan Zhao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Xiulian Sun, ; Pin Wang,
| | - Pin Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Xiulian Sun, ; Pin Wang,
| |
Collapse
|
29
|
Hou Y, Tang J. Advantages of Using 3D Intraoperative Ultrasound and Intraoperative MRI in Glioma Surgery. Front Oncol 2022; 12:925371. [PMID: 35719958 PMCID: PMC9203997 DOI: 10.3389/fonc.2022.925371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Lei Y, Momin S, Tian Z, Roper J, Lin J, Kahn S, Shu HK, Bradley JD, Liu T, Yang X. Brain multi-parametric MRI tumor subregion segmentation via hierarchical substructural activation network. MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING 2022:25. [DOI: 10.1117/12.2611809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Zhou Z, Wei J, Jiang W. Characterization of aging tumor microenvironment with drawing implications in predicting the prognosis and immunotherapy response in low-grade gliomas. Sci Rep 2022; 12:5457. [PMID: 35361903 PMCID: PMC8971489 DOI: 10.1038/s41598-022-09549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Aging tumor microenvironment (aging TME) is emerging as a hot spot in cancer research for its significant roles in regulation of tumor progression and tumor immune response. The immune and stromal scores of low-grade gliomas (LGGs) from TCGA and CGGA databases were determined by using ESTIMATE algorithm. Differentially expressed genes (DEGs) between high and low immune/stromal score groups were identified. Subsequently, weighted gene co-expression network analysis (WGCNA) was conducted to screen out aging TME related signature (ATMERS). Based on the expression patterns of ATMERS, LGGs were classified into two clusters with distinct prognosis via consensus clustering method. Afterwards, the aging TME score for each sample was calculated via gene set variation analysis (GSVA). Furthermore, TME components were quantified by MCP counter and CIBERSORT algorithm. The potential response to immunotherapy was evaluated by Tumor Immune Dysfunction and Exclusion analysis. We found that LGG patients with high aging TME scores showed poor prognosis, exhibited an immunosuppressive phenotype and were less likely to respond to immunotherapy compared to those with low scores. The predictive performance of aging TME score was verified in three external datasets. Finally, the expression of ATMERS in LGGs was confirmed at protein level through the Human Protein Atlas website and western blot analysis. This novel aging TME-based scoring system provided a robust biomarker for predicting the prognosis and immunotherapy response in LGGs.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao University, No.1 Jiaozhou Road, Qingdao, 266011, China.
| | - JinHong Wei
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Wenbo Jiang
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao University, No.1 Jiaozhou Road, Qingdao, 266011, China.
| |
Collapse
|
32
|
Jo J, van den Bent MJ, Nabors B, Wen PY, Schiff D. Surveillance imaging frequency in adult patients with lower-grade (WHO Grade 2 and 3) gliomas. Neuro Oncol 2022; 24:1035-1047. [PMID: 35137214 PMCID: PMC9248400 DOI: 10.1093/neuonc/noac031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With improved outcome following aggressive treatment in patients with grade 2 and 3 IDH-mutant (IDHmt), 1p/19q codeleted oligodendroglioma and IDHmt, non-codeleted astrocytoma, prolonged surveillance is desirable for early detection of tumor growth and malignant transformation. Current National Comprehensive Cancer Network (NCCN) guidelines provide imaging follow-up recommendations based on molecular classification of lower-grade gliomas, although individualized imaging guidelines based on treatments received and after tumor recurrence are not clearly specified. Other available guidelines have yet to incorporate the molecular biomarkers that inform the WHO classification of gliomas, and in some cases do not adequately consider current knowledge on IDHmt glioma growth rate and recurrence patterns. Moreover, these guidelines also do not provide specific recommendations for concerning clinical symptoms or radiographic findings warranting imaging studies out of prespecified intervals. Focusing on molecularly defined grade 2 and 3 IDHmt astrocytomas and oligodendrogliomas, we review current knowledge of tumor growth rates and time to tumor progression for each tumor type and propose a range of recommended MRI surveillance intervals for both the newly diagnosed and recurrent tumor setting. Additionally, we summarize situations in which imaging is advisable outside of these intervals.
Collapse
Affiliation(s)
- Jasmin Jo
- Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University, Greenville, North Carolina, USA
| | - Martin J van den Bent
- Department of Neuro-Oncology/Neurology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, Netherland
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center; Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - David Schiff
- Corresponding Author: David Schiff, MD, University of Virginia Neuro-Oncology Center, Box 800432 Charlottesville, VA 22908-0432, USA ()
| |
Collapse
|
33
|
Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2021-10-4-35-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intraoperative fluorescence diagnostics of high-grade gliomas is widely used in neurosurgical practice. This work analyzes the possibilities of fluorescence diagnostics for low-grade gliomas (LGG) using chlorin e6 photosensitizer. The study included patients with newly diagnosed LGG, for whom chlorin e6 was used for intraoperative fluorescence control at a dose of 1 mg/kg. During the operation, the fluorescence intensity of various areas of the putative tumor tissue was analyzed using the RSS Cam – Endo 1.4.313 software. Tissue samples with various degrees of fluorescence intensity were compared with the results of their histopathological analysis (WHO tumor diagnosis, Ki-67 index, P53, VEGF). Fluorescence was detected in more than half of the cases, but in most cases had a focal character and low fluorescence intensity. The fluorescence intensity directly correlated with the data of histopathological examination of tumor tissues (Ki-67 index (p=0.002), expression of P53 (p=0.0015) and VEGF (p=0.001)). The sensitivity of the method for LGG surgery was 72%, the specificity was 56,7%. Intraoperative fluorescence diagnostics with chlorin e6 can be used in LGG surgery, especially to visualize intratumoral areas with a higher degree of anaplasia.
Collapse
|
34
|
Combining hyperintense FLAIR rim and radiological features in identifying IDH mutant 1p/19q non-codeleted lower-grade glioma. Eur Radiol 2022; 32:3869-3879. [DOI: 10.1007/s00330-021-08500-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
|
35
|
Krauze AV, Camphausen K. Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition. Int J Mol Sci 2021; 22:13278. [PMID: 34948075 PMCID: PMC8703419 DOI: 10.3390/ijms222413278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and well positioned towards both the production and analysis of large-scale oncologic data with the potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The analysis of radiation therapy mediated treatment and the potential for computationally mediated analyses may lead to more precise therapy by employing large scale data. We analysed the state of the literature pertaining to large scale data, computational analysis, and the advancement of molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect existing and evolving approaches to realistic avenues for clinical implementation focusing on low grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG, rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how computational analysis and molecular science may synergistically drive advances in personalised radiation therapy (RT) and optimise patient outcomes.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA;
| | | |
Collapse
|
36
|
Optimal Combinations of Chemotherapy and Radiotherapy in Low-Grade Gliomas: A Mathematical Approach. J Pers Med 2021; 11:jpm11101036. [PMID: 34683177 PMCID: PMC8537400 DOI: 10.3390/jpm11101036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Low-grade gliomas (LGGs) are brain tumors characterized by their slow growth and infiltrative nature. Treatment options for these tumors are surgery, radiation therapy and chemotherapy. The optimal use of radiation therapy and chemotherapy is still under study. In this paper, we construct a mathematical model of LGG response to combinations of chemotherapy, specifically to the alkylating agent temozolomide and radiation therapy. Patient-specific parameters were obtained from longitudinal imaging data of the response of real LGG patients. Computer simulations showed that concurrent cycles of radiation therapy and temozolomide could provide the best therapeutic efficacy in-silico for the patients included in the study. The patient cohort was extended computationally to a set of 3000 virtual patients. This virtual cohort was subject to an in-silico trial in which matching the doses of radiotherapy to those of temozolomide in the first five days of each cycle improved overall survival over concomitant radio-chemotherapy according to RTOG 0424. Thus, the proposed treatment schedule could be investigated in a clinical setting to improve combination treatments in LGGs with substantial survival benefits.
Collapse
|
37
|
Reichert D, Erkkilae MT, Gesperger J, Wadiura LI, Lang A, Roetzer T, Woehrer A, Andreana M, Unterhuber A, Wilzbach M, Hauger C, Drexler W, Kiesel B, Widhalm G, Leitgeb RA. Fluorescence Lifetime Imaging and Spectroscopic Co-Validation for Protoporphyrin IX-Guided Tumor Visualization in Neurosurgery. Front Oncol 2021; 11:741303. [PMID: 34595120 PMCID: PMC8476921 DOI: 10.3389/fonc.2021.741303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Maximal safe resection is a key strategy for improving patient prognosis in the management of brain tumors. Intraoperative fluorescence guidance has emerged as a standard in the surgery of high-grade gliomas. The administration of 5-aminolevulinic acid prior to surgery induces tumor-specific accumulation of protoporphyrin IX, which emits red fluorescence under blue-light illumination. The technology, however, is substantially limited for low-grade gliomas and weakly tumor-infiltrated brain, where low protoporphyrin IX concentrations are outweighed by tissue autofluorescence. In this context, fluorescence lifetime imaging has shown promise to distinguish spectrally overlapping fluorophores. We integrated frequency-domain fluorescence lifetime imaging in a surgical microscope and combined it with spatially registered fluorescence spectroscopy, which can be considered a research benchmark for sensitive protoporphyrin IX detection. Fluorescence lifetime maps and spectra were acquired for a representative set of fresh ex-vivo brain tumor specimens (low-grade gliomas n = 15, high-grade gliomas n = 80, meningiomas n = 41, and metastases n = 35). Combining the fluorescence lifetime with fluorescence spectra unveiled how weak protoporphyrin IX accumulations increased the lifetime respective to tissue autofluorescence. Infiltration zones (4.1ns ± 1.8ns, p = 0.017) and core tumor areas (4.8ns ± 1.3ns, p = 0.040) of low-grade gliomas were significantly distinguishable from non-pathologic tissue (1.6ns ± 0.5ns). Similarly, fluorescence lifetimes for infiltrated and reactive tissue as well as necrotic and core tumor areas were increased for high-grade gliomas and metastasis. Meningioma tumor specimens showed strongly increased lifetimes (12.2ns ± 2.5ns, p = 0.005). Our results emphasize the potential of fluorescence lifetime imaging to optimize maximal safe resection in brain tumors in future and highlight its potential toward clinical translation.
Collapse
Affiliation(s)
- David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lisa I Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marco Wilzbach
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Christoph Hauger
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Habib A, Jovanovich N, Hoppe M, Ak M, Mamindla P, R. Colen R, Zinn PO. MRI-Based Radiomics and Radiogenomics in the Management of Low-Grade Gliomas: Evaluating the Evidence for a Paradigm Shift. J Clin Med 2021; 10:1411. [PMID: 33915813 PMCID: PMC8036428 DOI: 10.3390/jcm10071411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
Low-grade gliomas (LGGs) are tumors that affect mostly adults. These neoplasms are comprised mainly of oligodendrogliomas and diffuse astrocytomas. LGGs remain vexing to current management and therapeutic modalities although they exhibit more favorable survival rates compared with high-grade gliomas (HGGs). The specific genetic subtypes that these tumors exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of an LGG pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). The introduction of radiomics as a high throughput quantitative imaging technique that allows for improved diagnostic, prognostic and predictive indices has created more interest for such techniques in cancer research and especially in neurooncology (MRI-based classification of LGGs, predicting Isocitrate dehydrogenase (IDH) and Telomerase reverse transcriptase (TERT) promoter mutations and predicting LGG associated seizures). Radiogenomics refers to the linkage of imaging findings with the tumor/tissue genomics. Numerous applications of radiomics and radiogenomics have been described in the clinical context and management of LGGs. In this review, we describe the recently published studies discussing the potential application of radiomics and radiogenomics in LGGs. We also highlight the potential pitfalls of the above-mentioned high throughput computerized techniques and, most excitingly, explore the use of machine learning artificial intelligence technologies as standalone and adjunct imaging tools en route to enhance a personalized MRI-based tumor diagnosis and management plan design.
Collapse
Affiliation(s)
- Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA;
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Meagan Hoppe
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Murat Ak
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Priyadarshini Mamindla
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Rivka R. Colen
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA;
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| |
Collapse
|
40
|
van der Meer PB, Dirven L, Fiocco M, Vos MJ, Kouwenhoven MCM, van den Bent MJ, Taphoorn MJB, Koekkoek JAF. First-line antiepileptic drug treatment in glioma patients with epilepsy: Levetiracetam vs valproic acid. Epilepsia 2021; 62:1119-1129. [PMID: 33735464 PMCID: PMC8251728 DOI: 10.1111/epi.16880] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Objective This study aimed at estimating the cumulative incidence of antiepileptic drug (AED) treatment failure of first‐line monotherapy levetiracetam vs valproic acid in glioma patients with epilepsy. Methods In this retrospective observational study, a competing risks model was used to estimate the cumulative incidence of treatment failure, from AED treatment initiation, for the two AEDs with death as a competing event. Patients were matched on baseline covariates potentially related to treatment assignment and outcomes of interest according to the nearest neighbor propensity score matching technique. Maximum duration of follow‐up was 36 months. Results In total, 776 patients using levetiracetam and 659 using valproic acid were identified. Matching resulted in two equal groups of 429 patients, with similar covariate distribution. The cumulative incidence of treatment failure for any reason was significantly lower for levetiracetam compared to valproic acid (12 months: 33% [95% confidence interval (CI) 29%–38%] vs 50% [95% CI 45%–55%]; P < .001). When looking at specific reasons of treatment failure, treatment failure due to uncontrolled seizures was significantly lower for levetiracetam compared to valproic acid (12 months: 16% [95% CI 12%–19%] vs 28% [95% CI 23%–32%]; P < 0.001), but no differences were found for treatment failure due to adverse effects (12 months: 14% [95% CI 11%–18%] vs 15% [95% CI 11%–18%]; P = .636). Significance Our results suggest that levetiracetam may have favorable efficacy compared to valproic acid, whereas level of toxicity seems similar. Therefore, levetiracetam seems to be the preferred choice for first‐line AED treatment in patients with glioma.
Collapse
Affiliation(s)
- Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Marta Fiocco
- Department of Biomedical Data Sciences, Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands.,Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Maaike J Vos
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | | | | | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
41
|
Polano M, Fabbiani E, Adreuzzi E, Cintio FD, Bedon L, Gentilini D, Mongiat M, Ius T, Arcicasa M, Skrap M, Dal Bo M, Toffoli G. A New Epigenetic Model to Stratify Glioma Patients According to Their Immunosuppressive State. Cells 2021; 10:cells10030576. [PMID: 33807997 PMCID: PMC8001235 DOI: 10.3390/cells10030576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Gliomas are the most common primary neoplasm of the central nervous system. A promising frontier in the definition of glioma prognosis and treatment is represented by epigenetics. Furthermore, in this study, we developed a machine learning classification model based on epigenetic data (CpG probes) to separate patients according to their state of immunosuppression. We considered 573 cases of low-grade glioma (LGG) and glioblastoma (GBM) from The Cancer Genome Atlas (TCGA). First, from gene expression data, we derived a novel binary indicator to flag patients with a favorable immune state. Then, based on previous studies, we selected the genes related to the immune state of tumor microenvironment. After, we improved the selection with a data-driven procedure, based on Boruta. Finally, we tuned, trained, and evaluated both random forest and neural network classifiers on the resulting dataset. We found that a multi-layer perceptron network fed by the 338 probes selected by applying both expert choice and Boruta results in the best performance, achieving an out-of-sample accuracy of 82.8%, a Matthews correlation coefficient of 0.657, and an area under the ROC curve of 0.9. Based on the proposed model, we provided a method to stratify glioma patients according to their epigenomic state.
Collapse
Affiliation(s)
- Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Correspondence:
| | - Emanuele Fabbiani
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;
| | - Eva Adreuzzi
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Division of Molecular Oncology, 33081 Aviano, Italy; (E.A.); (M.M.)
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Luca Bedon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Mongiat
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Division of Molecular Oncology, 33081 Aviano, Italy; (E.A.); (M.M.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Mauro Arcicasa
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Department of Radiotherapy, 33081 Aviano, Italy;
| | - Miran Skrap
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
| |
Collapse
|
42
|
Ius T, Somma T, Baiano C, Guarracino I, Pauletto G, Nilo A, Maieron M, Palese F, Skrap M, Tomasino B. Risk Assessment by Pre-surgical Tractography in Left Hemisphere Low-Grade Gliomas. Front Neurol 2021; 12:648432. [PMID: 33679596 PMCID: PMC7928377 DOI: 10.3389/fneur.2021.648432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Tracking the white matter principal tracts is routinely typically included during the pre-surgery planning examinations and has revealed to limit functional resection of low-grade gliomas (LGGs) in eloquent areas. Objective: We examined the integrity of the Superior Longitudinal Fasciculus (SLF) and Inferior Fronto-Occipital Fasciculus (IFOF), both known to be part of the language-related network in patients with LGGs involving the temporo-insular cortex. In a comparative approach, we contrasted the main quantitative fiber tracking values in the tumoral (T) and healthy (H) hemispheres to test whether or not this ratio could discriminate amongst patients with different post-operative outcomes. Methods: Twenty-six patients with LGGs were included. We obtained quantitative fiber tracking values in the tumoral and healthy hemispheres and calculated the ratio (HIFOF–TIFOF)/HIFOF and the ratio (HSLF–TSLF)/HSLF on the number of streamlines. We analyzed how these values varied between patients with and without post-operative neurological outcomes and between patients with different post-operative Engel classes. Results: The ratio for both IFOF and SLF significantly differed between patient with and without post-operative neurological language deficits. No associations were found between white matter structural changes and post-operative seizure outcomes. Conclusions: Calculating the ratio on the number of streamlines and fractional anisotropy between the tumoral and the healthy hemispheres resulted to be a useful approach, which can prove to be useful during the pre-operative planning examination, as it gives a glimpse on the potential clinical outcomes in patients with LGGs involving the left temporo-insular cortex.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cinzia Baiano
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Ilaria Guarracino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Marta Maieron
- Medical Physics, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Barbara Tomasino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| |
Collapse
|
43
|
Sanvito F, Castellano A, Falini A. Advancements in Neuroimaging to Unravel Biological and Molecular Features of Brain Tumors. Cancers (Basel) 2021; 13:cancers13030424. [PMID: 33498680 PMCID: PMC7865835 DOI: 10.3390/cancers13030424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Advanced neuroimaging is gaining increasing relevance for the characterization and the molecular profiling of brain tumor tissue. On one hand, for some tumor types, the most widespread advanced techniques, investigating diffusion and perfusion features, have been proven clinically feasible and rather robust for diagnosis and prognosis stratification. In addition, 2-hydroxyglutarate spectroscopy, for the first time, offers the possibility to directly measure a crucial molecular marker. On the other hand, numerous innovative approaches have been explored for a refined evaluation of tumor microenvironments, particularly assessing microstructural and microvascular properties, and the potential applications of these techniques are vast and still to be fully explored. Abstract In recent years, the clinical assessment of primary brain tumors has been increasingly dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor pathophysiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers for predicting tumor grades and molecular subtypes, opening the era of “molecular imaging” and radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors, including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques. Lastly, after providing an overview of the advancements, we illustrate current clinical applications and future perspectives.
Collapse
Affiliation(s)
- Francesco Sanvito
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-3015
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|