1
|
Chand T, Dubey AK, Misra G. Unraveling HPV-associated cancer complexity: From molecular insights to innovative therapies. Heliyon 2025; 11:e42437. [PMID: 40007779 PMCID: PMC11850150 DOI: 10.1016/j.heliyon.2025.e42437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Human papillomavirus (HPV) contributes to a high global incidence of sexually transmitted infections, predominantly associated with cervical cancer, as well as head and neck, penile, anal, vaginal, and vulvar cancers. Despite efforts through improved screening and HPV vaccination campaigns, challenges persist, influencing the frequency of HPV-related malignancies. Collaborative scientific endeavors strive to pioneer groundbreaking approaches, aiming to alleviate the adverse consequences of HPV-related malignancies on individuals and communities. The present review is focused on exhaustively covering HPV-associated cancers, particularly cervical cancer. This study highlights the initiation, progression, immune invasion, and treatment strategies of HPV-associated cancers. The role of viral oncoproteins E6 and E7 responsible for immune evasion and subsequent latent infection is also elaborated. The article also sheds light on the pivotal role of HPV vaccination in averting high-risk HPV infections and associated cancers. The scope of this review encompasses HPV-associated cancer epidemiology, regional disparities, and the distinctive challenges faced in the context of India. This will be a value addition to the knowledge repertoire beneficial for creating awareness and designing health policies.
Collapse
Affiliation(s)
- Tara Chand
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), A-32, Sector-62, Noida, 201309, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Ashwini Kumar Dubey
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), A-32, Sector-62, Noida, 201309, India
| | - Gauri Misra
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), A-32, Sector-62, Noida, 201309, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
2
|
Shin N, Lee HJ, Sim DY, Ahn CH, Park SY, Koh W, Khil J, Shim BS, Kim B, Kim SH. Anti-Warburg Mechanism of Ginsenoside F2 in Human Cervical Cancer Cells via Activation of miR193a-5p and Inhibition of β-Catenin/c-Myc/Hexokinase 2 Signaling Axis. Int J Mol Sci 2024; 25:9418. [PMID: 39273365 PMCID: PMC11394963 DOI: 10.3390/ijms25179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Though Ginsenoside F2 (GF2), a protopanaxadiol saponin from Panax ginseng, is known to have an anticancer effect, its underlying mechanism still remains unclear. In our model, the anti-glycolytic mechanism of GF2 was investigated in human cervical cancer cells in association with miR193a-5p and the β-catenin/c-Myc/Hexokinase 2 (HK2) signaling axis. Here, GF2 exerted significant cytotoxicity and antiproliferation activity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (procaspase3) in HeLa and SiHa cells. Consistently, GF2 attenuated the expression of Wnt, β-catenin, and c-Myc and their downstream target genes such as HK2, pyruvate kinase isozymes M2 (PKM2), and lactate dehydrogenase A (LDHA), along with a decreased production of glucose and lactate in HeLa and SiHa cells. Moreover, GF2 suppressed β-catenin and c-Myc stability in the presence and absence of cycloheximide in HeLa cells, respectively. Additionally, the depletion of β-catenin reduced the expression of c-Myc and HK2 in HeLa cells, while pyruvate treatment reversed the ability of GF2 to inhibit β-catenin, c-Myc, and PKM2 in GF2-treated HeLa cells. Notably, GF2 upregulated the expression of microRNA139a-5p (miR139a-5p) in HeLa cells. Consistently, the miR139a-5p mimic enhanced the suppression of β-catenin, c-Myc, and HK2, while the miR193a-5p inhibitor reversed the ability of GF2 to attenuate the expression of β-catenin, c-Myc, and HK2 in HeLa cells. Overall, these findings suggest that GF2 induces apoptosis via the activation of miR193a-5p and the inhibition of β-catenin/c-Myc/HK signaling in cervical cancer cells.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Wonil Koh
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Jaeho Khil
- Institute of Sports Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| |
Collapse
|
3
|
Balhara N, Yadav R, Ranga S, Ahuja P, Tanwar M. Understanding the HPV associated cancers: A comprehensive review. Mol Biol Rep 2024; 51:743. [PMID: 38874682 DOI: 10.1007/s11033-024-09680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Human papillomavirus (HPV), a common cause of sexually transmitted diseases, may cause warts and lead to various types of cancers, which makes it important to understand the risk factors associated with it. HPV is the leading risk factor and plays a crucial role in the progression of cervical cancer. Viral oncoproteins E6 and E7 play a pivotal role in this process. Beyond cervical cancer, HPV-associated cancers of the mouth and throat are also increasing. HPV can also contribute to other malignancies like penile, vulvar, and vaginal cancers. Emerging evidence links HPV to these cancers. Research on the oncogenic effect of HPV is still ongoing and explorations of screening techniques, vaccination, immunotherapy and targeted therapeutics are all in progress. The present review offers valuable insight into the current understanding of the role of HPV in cancer and its potential implications for treatment and prevention in the future.
Collapse
Affiliation(s)
- Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
4
|
Jian X, Shi C, Luo W, Zhou L, Jiang L, Liu K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed Pharmacother 2024; 173:116418. [PMID: 38461683 DOI: 10.1016/j.biopha.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Quercetin is a representative flavonoid that is widely present in fruits, herbs, and vegetables. It is also an important active core component in traditional Chinese medicines. As an important flavonoid, quercetin has various properties and exerts antioxidant, anti-inflammatory, and cardioprotective effects. The public interest in quercetin is increasing, and quercetin has been used to prevent or treat numerous of diseases, such as polycystic ovary syndrome (PCOS), cancer, autoimmune diseases and chronic cardiovascular diseases, in clinical experiments and animal studies due to its powerful antioxidant properties and minimal side effects. Quercetin exerts marked pharmacological effects on gynecological disorders; however, there have been no reviews about the potential health benefits of quercetin in the context of gynecological disorders, including PCOS, premature ovary failure (POF), endometriosis (EM), ovarian cancer (OC), cervical cancer (CC) and endometrial carcinoma (EC). Thus, this review aimed to summarize the biological effects of quercetin on gynecological disorders and its mechanisms.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Weichen Luo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
5
|
Xue W, Sun R, Hao Z, Xing Z, Cheng H, Shao L. Tetrandrine inhibits migration and invasion of BGC-823 and MKN-45 cells by regulating PI3K/AKT/mTOR signaling pathway. Chem Biol Drug Des 2023; 101:927-936. [PMID: 36593659 DOI: 10.1111/cbdd.14202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Tetrandrine (Tet), a traditional Chinese herbal medicine extract, exhibits anti-cancer effect on many types of cancer. Nonetheless, the action mechanism of Tet in gastric cancer (GC) is still largely unclear. In the current study, proliferation, invasion, and migration of the BGC-823 and MKN-45 cells were effectively suppressed by Tet treatment in a dose-dependent manner. Moreover, Tet suppressed expression of the proliferation-associated protein PCNA, the interstitial cell phenotype N-cadherin, and the extracellular matrix-associated MMP-2 and MMP-9 in BGC-823 and MKN-45 cells in a dose-dependent manner. PI3K/AKT/mTOR, a cancer promoting signaling, was inactivated by Tet in a dose-dependent manner in BGC-823 and MKN-45 cells. Furthermore, our results demonstrated that the inhibition of Tet to PCNA, N-cadherin, MMP-2, and MMP-9 expression was partly rescuedby AKT inhibitor or mTOR inhibitor. In animal experiments, tumor growth was inhibited by Tet administration in a dose-dependent manner. In conclusion, the current data indicated that Tet had a critical effect on inhibiting BGC-823 and MKN-45 cells proliferation, migration, invasion, and tumor growth via regulating PI3K/AKT/mTOR signaling pathway, suggesting that Tet might be a potential treatment for GC.
Collapse
Affiliation(s)
- Wanli Xue
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Rui Sun
- Department of Endocrinology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Zheng Hao
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Zhenzhen Xing
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Hongjie Cheng
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Lei Shao
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| |
Collapse
|
6
|
Ferreira M, Gomes D, Neto M, Passarinha LA, Costa D, Sousa Â. Development and Characterization of Quercetin-Loaded Delivery Systems for Increasing Its Bioavailability in Cervical Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15030936. [PMID: 36986797 PMCID: PMC10058887 DOI: 10.3390/pharmaceutics15030936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Quercetin is a natural flavonoid with high anticancer activity, especially for related-HPV cancers such as cervical cancer. However, quercetin exhibits a reduced aqueous solubility and stability, resulting in a low bioavailability that limits its therapeutic use. In this study, chitosan/sulfonyl-ether-β-cyclodextrin (SBE-β-CD)-conjugated delivery systems have been explored in order to increase quercetin loading capacity, carriage, solubility and consequently bioavailability in cervical cancer cells. SBE-β-CD/quercetin inclusion complexes were tested as well as chitosan/SBE-β-CD/quercetin-conjugated delivery systems, using two types of chitosan differing in molecular weight. Regarding characterization studies, HMW chitosan/SBE-β-CD/quercetin formulations have demonstrated the best results, which are obtaining nanoparticle sizes of 272.07 ± 2.87 nm, a polydispersity index (PdI) of 0.287 ± 0.011, a zeta potential of +38.0 ± 1.34 mV and an encapsulation efficiency of approximately 99.9%. In vitro release studies were also performed for 5 kDa chitosan formulations, indicating a quercetin release of 9.6% and 57.53% at pH 7.4 and 5.8, respectively. IC50 values on HeLa cells indicated an increased cytotoxic effect with HMW chitosan/SBE-β-CD/quercetin delivery systems (43.55 μM), suggesting a remarkable improvement of quercetin bioavailability.
Collapse
Affiliation(s)
- Miguel Ferreira
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Gomes
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Miguel Neto
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís A. Passarinha
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-052
| |
Collapse
|
7
|
Malik S, Sah R, Muhammad K, Waheed Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts-A Comprehensive Review. Vaccines (Basel) 2023; 11:102. [PMID: 36679945 PMCID: PMC9860736 DOI: 10.3390/vaccines11010102] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Human papillomaviruses (HPVs) are high-risk causative factors for HPV infection. This infection does not come alone; it is often seen with co-infection with other viruses and acts as a causative agent for several malignancies. The major purpose of this comprehensive study was to highlight some recent advances in biotechnology associated with HPV infection, including understanding its host interactions and cancerous progression. A systematic research strategy was used to gather data from recent, and the most advanced published electronic sources. The compiled data explain the recent understanding of biology, host-viral interaction cycles, co-infection with other viral diseases, and cellular transformation toward malignancies associated with HPV. In recent years, some vaccination protocols have been introduced in the form of live attenuated, subunit, and DNA-based vaccines. Moreover, some strategies of nanotechnology are being employed to synthesize drugs and vaccines with a whole new approach of plant-based products. The data are immense for the proposed research question, yet the need is to implement modern follow-up screening and modern therapeutics at the clinical level and to conduct wide-scale public awareness to lessen the HPV-related disease burden.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
8
|
Zhen S, Qiang R, Lu J, Tuo X, Yang X, Li X. CRISPR/Cas9-HPV-liposome enhances antitumor immunity and treatment of HPV infection-associated cervical cancer. J Med Virol 2023; 95:e28144. [PMID: 36121194 DOI: 10.1002/jmv.28144] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
Increasing evidence shows that human papillomavirus (HPV) E6/E7 deletion in cervical cancer cells may be related to the immunosuppressive tumor microenvironment and adverse reactions or resistance to immune checkpoint blockade. Here, we demonstrate that liposome delivery of CRISPR/cas9 can effectively knock out HPV, which, in turn, induces autophagy and triggers cell death-related immune activation by releasing damage-related molecular patterns. The results of in vivo experiments showed that HPV-targeting guide RNA-liposomes could promote CD8+ T cell infiltration in tumor tissues; enhance the expression of proinflammatory cytokines, such as interleukin-12, tumor necrosis factor-α, and interferon-γ, and reduce regulatory T cells and myeloid suppressor cells. The combination of HPV-targeting guide RNA-liposomes with immune checkpoint inhibitors and antiprogrammed death-1 antibodies produced highly effective antitumor effects. In addition, combination therapy induced immune memory in the cervical cancer model.
Collapse
Affiliation(s)
- Shuai Zhen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rong Qiang
- Medical Heredity Research Center, Northwest Women's and Children's Hospital, Shaanxi, China
| | - Jiaojiao Lu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoqian Tuo
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiling Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Ventura C, Luís Â, Soares CP, Venuti A, Paolini F, Pereira L, Sousa Â. The Effectiveness of Therapeutic Vaccines for the Treatment of Cervical Intraepithelial Neoplasia 3: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:vaccines10091560. [PMID: 36146638 PMCID: PMC9500864 DOI: 10.3390/vaccines10091560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cervical cancer (CC) is a disease that affects many women worldwide, especially in low-income countries. The human papilloma virus (HPV) is the main causative agent of this disease, with the E6 and E7 oncoproteins being responsible for the development and maintenance of transformed status. In addition, HPV is also responsible for the appearance of cervical intraepithelial neoplasia (CIN), a pre-neoplastic condition burdened by very high costs for its screening and therapy. So far, only prophylactic vaccines have been approved by regulatory agencies as a means of CC prevention. However, these vaccines cannot treat HPV-positive women. A search was conducted in several databases (PubMed, Scopus, Web of Science, and ClinicalTrials.gov) to systematically identify clinical trials involving therapeutic vaccines against CIN 3. Histopathological regression data, immunological parameters, safety, DNA clearance, and vaccine efficacy were considered from each selected study, and from the 102 articles found, 8 were selected based on the defined inclusion criteria. Histopathological regression from CIN 3 to CIN < 1 was 22.1% (95% CI: 0.627−0.967; p-value = 0.024), showing a vaccine efficacy of 23.6% (95% CI; 0.666−0.876; p-value < 0.001). DNA clearance was assessed, and the risk of persistent HPV DNA was 23.2% (95% CI: 0.667−0.885; p-value < 0.001). Regarding immunological parameters, immune responses by specific T-HPV cells were more likely in vaccinated women (95% CI: 1.245−9.162; p-value = 0.017). In short, these studies favored the vaccine group over the placebo group. This work indicated that therapeutic vaccines are efficient in the treatment of CIN 3, even after accounting for publication bias.
Collapse
Affiliation(s)
- Cathy Ventura
- CICS-UBI–Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ângelo Luís
- CICS-UBI–Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Christiane P. Soares
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Campus Ville, Araraquara 14800-903, SP, Brazil
| | - Aldo Venuti
- HPV-UNIT-UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Paolini
- HPV-UNIT-UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Luísa Pereira
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- CMA-UBI-Centro de Matemática e Aplicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal
- Correspondence: (L.P.); (Â.S.); Tel.: +351-275-329-052 (L.P. & Â.S.)
| | - Ângela Sousa
- CICS-UBI–Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (L.P.); (Â.S.); Tel.: +351-275-329-052 (L.P. & Â.S.)
| |
Collapse
|
10
|
Ferreira M, Costa D, Sousa Â. Flavonoids-Based Delivery Systems towards Cancer Therapies. Bioengineering (Basel) 2022; 9:197. [PMID: 35621475 PMCID: PMC9137930 DOI: 10.3390/bioengineering9050197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.
Collapse
Affiliation(s)
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
11
|
Vaccines against Infectious Diseases and Cancer. Vaccines (Basel) 2022; 10:vaccines10050648. [PMID: 35632404 PMCID: PMC9144464 DOI: 10.3390/vaccines10050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
We live on a planet marked by remarkable health disparities [...]
Collapse
|
12
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
13
|
Sayed R, Safwat NA, Amin BH, Yosri M. Study of the dual biological impacts of aqueous extracts of normal and gamma-irradiated Galleria mellonella larvae. J Taibah Univ Med Sci 2022; 17:765-773. [PMID: 36050949 PMCID: PMC9396055 DOI: 10.1016/j.jtumed.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives Galleria mellonella assimilates beeswax using many gut enzymes; however, high doses of gamma radiation have been used to eradicate such pests, affecting its life cycle. In vitro studies of irradiated extracts of G. mellonella against bacterial species as well as three tumour cell lines are demonstrated in the present study. The antibacterial and antitumour effects are compared with those of the non-irradiated Galleria mellonella larval extract. Methods The effect of different dose levels of gamma irradiation, ranging from 2 to 8 Gy, was tested on G. mellonella lipase, protease, and acid phosphate activities. The antimicrobial activity of un-irradiated and irradiated G. mellonella larval extracts was tested against different gram-positive and gram-negative bacteria and some fungi. The antitumour action was tested against different tumour cell lines. A cytotoxicity assay was performed on normal and irradiated larval extracts against normal human lung fibroblast cells. A microscopic examination of Streptococcus mutants and HepG-2 was performed using transmission and scanning electron microscopy. Results Optimum results were obtained at 6 Gy, which enhanced maximum enzymatic activity. Maximum antimicrobial activity was obtained against Streptococcus mutants with MIC 31.25 μg/ml at a dose of 6 Gy. A microscopic examination depicted an apoptotic process for irradiated G. mellonella larvae with either Streptococcus mutants or HepG-2. Conclusion The present study shows a synergistic relationship between the G. mellonella larval extract and a 6 Gy radiation dose for further biomedical applications.
Collapse
|
14
|
Fatemi SA, Seifi N, Rasekh S, Amiri S, Moezzi SMI, Bagheri A, Fathi S, Negahdaripour M. Immunotherapeutic approaches for HPV-caused cervical cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:51-90. [PMID: 35305725 DOI: 10.1016/bs.apcsb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.
Collapse
Affiliation(s)
- Seyed Amirreza Fatemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadia Seifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
In Silico Approaches: A Way to Unveil Novel Therapeutic Drugs for Cervical Cancer Management. Pharmaceuticals (Basel) 2021; 14:ph14080741. [PMID: 34451838 PMCID: PMC8400112 DOI: 10.3390/ph14080741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common pathology in women worldwide and presents a high impact in developing countries due to limited financial resources as well as difficulties in monitoring and access to health services. Human papillomavirus (HPV) is the leading cause of CC, and despite the approval of prophylactic vaccines, there is no effective treatment for patients with pre-existing infections or HPV-induced carcinomas. High-risk (HR) HPV E6 and E7 oncoproteins are considered biomarkers in CC progression. Since the E6 structure was resolved, it has been one of the most studied targets to develop novel and specific therapeutics to treat/manage CC. Therefore, several small molecules (plant-derived or synthetic compounds) have been reported as blockers/inhibitors of E6 oncoprotein action, and computational-aided methods have been of high relevance in their discovery and development. In silico approaches have become a powerful tool for reducing the time and cost of the drug development process. Thus, this review will depict small molecules that are already being explored as HR HPV E6 protein blockers and in silico approaches to the design of novel therapeutics for managing CC. Besides, future perspectives in CC therapy will be briefly discussed.
Collapse
|
16
|
Tornesello ML, Buonaguro FM. Human Papillomavirus and Cancers. Cancers (Basel) 2020; 12:3772. [PMID: 33333750 PMCID: PMC7765250 DOI: 10.3390/cancers12123772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Persistent infection with oncogenic human papillomaviruses (HPVs) is the main cause of nearly all cervical cancers as well as of a significant proportion of other malignancies arising from the mucosal squamous epithelia of the anogenital tract as well as of the head and neck region [1]. [...].
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Naples, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|