1
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Wang S, Shen Y, Zeng F, Wang M, Li B, Shen D, Tang X, Wang B. Exploiting biochemical data to improve osteosarcoma diagnosis with deep learning. Health Inf Sci Syst 2024; 12:31. [PMID: 38645838 PMCID: PMC11026331 DOI: 10.1007/s13755-024-00288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Early and accurate diagnosis of osteosarcomas (OS) is of great clinical significance, and machine learning (ML) based methods are increasingly adopted. However, current ML-based methods for osteosarcoma diagnosis consider only X-ray images, usually fail to generalize to new cases, and lack explainability. In this paper, we seek to explore the capability of deep learning models in diagnosing primary OS, with higher accuracy, explainability, and generality. Concretely, we analyze the added value of integrating the biochemical data, i.e., alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and design a model that incorporates the numerical features of ALP and LDH and the visual features of X-ray imaging through a late fusion approach in the feature space. We evaluate this model on real-world clinic data with 848 patients aged from 4 to 81. The experimental results reveal the effectiveness of incorporating ALP and LDH simultaneously in a late fusion approach, with the accuracy of the considered 2608 cases increased to 97.17%, compared to 94.35% in the baseline. Grad-CAM visualizations consistent with orthopedic specialists further justified the model's explainability.
Collapse
Affiliation(s)
- Shidong Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
| | - Yangyang Shen
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
| | - Meng Wang
- College of Design and Innovation, Tongji University, Shanghai, China
| | - Bohan Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Ministry of Industry and Information Technology, Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China
- National Engineering Laboratory for Integrated Aero-Space-Ground Ocean Big Data Application Technology, Xi’an, China
| | - Dian Shen
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
| | - Beilun Wang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Yang Q, Madueke-Laveaux OS, Cun H, Wlodarczyk M, Garcia N, Carvalho KC, Al-Hendy A. Comprehensive Review of Uterine Leiomyosarcoma: Pathogenesis, Diagnosis, Prognosis, and Targeted Therapy. Cells 2024; 13:1106. [PMID: 38994959 PMCID: PMC11240800 DOI: 10.3390/cells13131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most common subtype of uterine sarcomas. They have a poor prognosis with high rates of recurrence and metastasis. The five-year survival for uLMS patients is between 25 and 76%, with survival rates approaching 10-15% for patients with metastatic disease at the initial diagnosis. Accumulating evidence suggests that several biological pathways are involved in uLMS pathogenesis. Notably, drugs that block abnormal functions of these pathways remarkably improve survival in uLMS patients. However, due to chemotherapy resistance, there remains a need for novel drugs that can target these pathways effectively. In this review article, we provide an overview of the recent progress in ascertaining the biological functions and regulatory mechanisms in uLMS from the perspective of aberrant biological pathways, including DNA repair, immune checkpoint blockade, protein kinase and intracellular signaling pathways, and the hedgehog pathway. We review the emerging role of epigenetics and epitranscriptome in the pathogenesis of uLMS. In addition, we discuss serum markers, artificial intelligence (AI) combined with machine learning, shear wave elastography, current management and medical treatment options, and ongoing clinical trials for patients with uLMS. Comprehensive, integrated, and deeper insights into the pathobiology and underlying molecular mechanisms of uLMS will help develop novel strategies to treat patients with this aggressive tumor.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| | | | - Han Cun
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| | - Marta Wlodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Natalia Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento deObstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil;
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| |
Collapse
|
4
|
Champiré A, Berabez R, Braka A, Cosson A, Corret J, Girardin C, Serrano A, Aci-Sèche S, Bonnet P, Josselin B, Brindeau P, Ruchaud S, Leguevel R, Chatterjee D, Mathea S, Knapp S, Brion R, Verrecchia F, Vallée B, Plé K, Bénédetti H, Routier S. Tetrahydropyridine LIMK inhibitors: Structure activity studies and biological characterization. Eur J Med Chem 2024; 271:116391. [PMID: 38669909 DOI: 10.1016/j.ejmech.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.
Collapse
Affiliation(s)
- Anthony Champiré
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Rayan Berabez
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Abdennour Braka
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Aurélie Cosson
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Justine Corret
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Samia Aci-Sèche
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Pascal Bonnet
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Béatrice Josselin
- Sorbonne Université / CNRS UMR 8227, Station Biologique, 29688, Roscoff, France
| | - Pierre Brindeau
- Sorbonne Université / CNRS UMR 8227, Station Biologique, 29688, Roscoff, France
| | - Sandrine Ruchaud
- Sorbonne Université / CNRS UMR 8227, Station Biologique, 29688, Roscoff, France
| | - Rémy Leguevel
- Plate-forme ImPACcell, UAR BIOSIT, Université de Rennes 1, 35043, Rennes, France
| | - Deep Chatterjee
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences Goethe- University, 60438, Frankfurt am Main, Germany; Institute for Pharmaceutical Chemistry, Max von Lauestrasse 9, Goethe-University, 60438, Frankfurt am Main, Germany
| | - Sebastian Mathea
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences Goethe- University, 60438, Frankfurt am Main, Germany; Institute for Pharmaceutical Chemistry, Max von Lauestrasse 9, Goethe-University, 60438, Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences Goethe- University, 60438, Frankfurt am Main, Germany; Institute for Pharmaceutical Chemistry, Max von Lauestrasse 9, Goethe-University, 60438, Frankfurt am Main, Germany
| | - Régis Brion
- CRCI(2)NA, INSERM, UMR 1307, CNRS, UMR 6075, Université de Nantes, 44035, Nantes, France; Centre Hospitalier Universitaire de Nantes, 44000, Nantes, France
| | - Franck Verrecchia
- CRCI(2)NA, INSERM, UMR 1307, CNRS, UMR 6075, Université de Nantes, 44035, Nantes, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Karen Plé
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France.
| | - Sylvain Routier
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France.
| |
Collapse
|
5
|
Banaszek N, Kurpiewska D, Kozak K, Rutkowski P, Sobczuk P. Hedgehog pathway in sarcoma: from preclinical mechanism to clinical application. J Cancer Res Clin Oncol 2023; 149:17635-17649. [PMID: 37815662 PMCID: PMC10657326 DOI: 10.1007/s00432-023-05441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Sarcomas are a diverse group of malignant neoplasms of mesenchymal origin. They develop rarely, but due to poor prognosis, they are a challenging and significant clinical problem. Currently, available therapeutic options have very limited activity. A better understating of sarcomas' pathogenesis may help develop more effective therapies in the future. The Sonic hedgehog (Shh) signaling pathway is involved in both embryonic development and mature tissue repair and carcinogenesis. Shh pathway inhibitors are presently used in the treatment of basal cell carcinoma. Its increased activity has been demonstrated in many sarcomas, including osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, and malignant rhabdoid tumor. In vitro studies have demonstrated the effectiveness of inhibitors of the Hedgehog pathway in inhibiting proliferation in those sarcomas in which the components of the pathway are overexpressed. These results were confirmed by in vivo studies, which additionally proved the influence of Shh pathway inhibitors on limiting the metastatic potential of sarcoma cells. However, until now, the efficacy of sarcomas treatment with Shh pathway inhibitors has not been established in clinical trials. The reason for that may be the non-canonical activation of the pathway or interactions with other signaling pathways, such as Wnt or Notch. In this review, we present the Shh signaling pathway's role in the pathogenesis of sarcomas, including both canonical and non-canonical signaling. We also propose how this knowledge could be potentially translated into clinics.
Collapse
Affiliation(s)
- Natalia Banaszek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Kurpiewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Toivanen K, Kilpinen S, Ojala K, Merikoski N, Salmikangas S, Sampo M, Böhling T, Sihto H. PDE3A Is a Highly Expressed Therapy Target in Myxoid Liposarcoma. Cancers (Basel) 2023; 15:5308. [PMID: 38001568 PMCID: PMC10669966 DOI: 10.3390/cancers15225308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Liposarcomas (LPSs) are a heterogeneous group of malignancies that arise from adipose tissue. Although LPSs are among the most common soft-tissue sarcoma subtypes, precision medicine treatments are not currently available. To discover LPS-subtype-specific therapy targets, we investigated RNA sequenced transcriptomes of 131 clinical LPS tissue samples and compared the data with a transcriptome database that contained 20,218 samples from 95 healthy tissues and 106 cancerous tissue types. The identified genes were referred to the NCATS BioPlanet library with Enrichr to analyze upregulated signaling pathways. PDE3A protein expression was investigated with immunohistochemistry in 181 LPS samples, and PDE3A and SLFN12 mRNA expression with RT-qPCR were investigated in 63 LPS samples. Immunoblotting and cell viability assays were used to study LPS cell lines and their sensitivity to PDE3A modulators. We identified 97, 247, and 37 subtype-specific, highly expressed genes in dedifferentiated, myxoid, and pleomorphic LPS subtypes, respectively. Signaling pathway analysis revealed a highly activated hedgehog signaling pathway in dedifferentiated LPS, phospholipase c mediated cascade and insulin signaling in myxoid LPS, and pathways associated with cell proliferation in pleomorphic LPS. We discovered a strong association between high PDE3A expression and myxoid LPS, particularly in high-grade tumors. Moreover, myxoid LPS samples showed elevated expression levels of SLFN12 mRNA. In addition, PDE3A- and SLFN12-coexpressing LPS cell lines SA4 and GOT3 were sensitive to PDE3A modulators. Our results indicate that PDE3A modulators are promising drugs to treat myxoid LPS. Further studies are required to develop these drugs for clinical use.
Collapse
Affiliation(s)
- Kirsi Toivanen
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Sami Kilpinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00014 Helsinki, Finland;
| | - Kalle Ojala
- HUS Vatsakeskus, Helsinki University Hospital, PL 340, 00290 Helsinki, Finland;
| | - Nanna Merikoski
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Sami Salmikangas
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Mika Sampo
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland;
| | - Tom Böhling
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Harri Sihto
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| |
Collapse
|
7
|
Dupuy M, Lamoureux F, Mullard M, Postec A, Regnier L, Baud’huin M, Georges S, Brounais-Le Royer B, Ory B, Rédini F, Verrecchia F. Ewing sarcoma from molecular biology to the clinic. Front Cell Dev Biol 2023; 11:1248753. [PMID: 37752913 PMCID: PMC10518617 DOI: 10.3389/fcell.2023.1248753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the second most common primary malignant bone tumor in children, adolescents and young adults, after osteosarcoma. Since the 1980s, conventional treatment has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents combined with surgical resection of the tumor when possible. These treatments have increased the patient survival rate to 70% for localized forms, which drops drastically to less than 30% when patients are resistant to chemotherapy or when pulmonary metastases are present at diagnosis. However, the lack of improvement in these survival rates over the last decades points to the urgent need for new therapies. Genetically, ES is characterized by a chromosomal translocation between a member of the FET family and a member of the ETS family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12), between the EWS RNA-binding protein and the FLI1 transcription factor, leading to the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor playing a crucial role in the development of ES. This review provides a non-exhaustive overview of ES from a clinical and biological point of view, describing its main clinical, cellular and molecular aspects.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| | | | | | | | | | | | | | | | | | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| |
Collapse
|
8
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
9
|
Wang J, Cui B, Li X, Zhao X, Huang T, Ding X. The emerging roles of Hedgehog signaling in tumor immune microenvironment. Front Oncol 2023; 13:1171418. [PMID: 37213270 PMCID: PMC10196179 DOI: 10.3389/fonc.2023.1171418] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway is pervasively involved in human malignancies, making it an effective target for cancer treatment for decades. In addition to its direct role in regulating cancer cell attributes, recent work indicates that it has an immunoregulatory effect on tumor microenvironments. An integrated understanding of these actions of Hh signaling pathway in tumor cells and tumor microenvironments will pave the way for novel tumor treatments and further advances in anti-tumor immunotherapy. In this review, we discuss the most recent research about Hh signaling pathway transduction, with a particular emphasis on its role in modulating tumor immune/stroma cell phenotype and function, such as macrophage polarity, T cell response, and fibroblast activation, as well as their mutual interactions between tumor cells and nonneoplastic cells. We also summarize the recent advances in the development of Hh pathway inhibitors and nanoparticle formulation for Hh pathway modulation. We suggest that targeting Hh signaling effects on both tumor cells and tumor immune microenvironments could be more synergistic for cancer treatment.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Xiaojie Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Xinyue Zhao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China
- *Correspondence: Taomin Huang, ; Xiaolei Ding,
| | - Xiaolei Ding
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Taomin Huang, ; Xiaolei Ding,
| |
Collapse
|
10
|
Fayzullina D, Tsibulnikov S, Stempen M, Schroeder BA, Kumar N, Kharwar RK, Acharya A, Timashev P, Ulasov I. Novel Targeted Therapeutic Strategies for Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14081988. [PMID: 35454895 PMCID: PMC9032664 DOI: 10.3390/cancers14081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Ewing sarcoma is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Therapy has increased the 5-year survival rate in the last 40 years, although the recurrence rate has remained high. There is an immediate and unmet need for the development of novel Ewing sarcoma therapies. We offer new prospective targets for the therapy of Ewing sarcoma. The EWSR1/FLI1 fusion protein, which is identified in 85–90% of Ewing sarcoma tumors, and its direct targets are given special focus in this study. Experimantal therapy that targets multiple signaling pathways activated during ES progression, alone or in combination with existing regimens, may become the new standard of care for Ewing sarcoma patients, improving patient survival. Abstract Ewing sarcoma (ES) is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Amplifications in genomic, proteomic, and metabolism are characteristics of sarcoma, and targeting altered cancer cell molecular processes has been proposed as the latest promising strategy to fight cancer. Recent technological advancements have elucidated some of the underlying oncogenic characteristics of Ewing sarcoma. Offering new insights into the physiological basis for this phenomenon, our current review examines the dynamics of ES signaling as it related to both ES and the microenvironment by integrating genomic and proteomic analyses. An extensive survey of the literature was performed to compile the findings. We have also highlighted recent and ongoing studies integrating metabolomics and genomics aimed at better understanding the complex interactions as to how ES adapts to changing biochemical changes within the tumor microenvironment.
Collapse
Affiliation(s)
- Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Mikhail Stempen
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Naveen Kumar
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Rajesh Kumar Kharwar
- Endocrine Research Lab, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur 222146, India;
| | - Arbind Acharya
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Correspondence:
| |
Collapse
|