1
|
Singh M, Tiwari PK, Kashyap V, Kumar S. Proteomics of Extracellular Vesicles: Recent Updates, Challenges and Limitations. Proteomes 2025; 13:12. [PMID: 40137841 PMCID: PMC11944546 DOI: 10.3390/proteomes13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles secreted by cells, including exosomes, microvesicles, and apoptotic bodies. Proteomic analyses of EVs, particularly in relation to cancer, reveal specific biomarkers crucial for diagnosis and therapy. However, isolation techniques such as ultracentrifugation, size-exclusion chromatography, and ultrafiltration face challenges regarding purity, contamination, and yield. Contamination from other proteins complicates downstream processing, leading to difficulties in identifying biomarkers and interpreting results. Future research will focus on refining EV characterization for diagnostic and therapeutic applications, improving proteomics tools for greater accuracy, and exploring the use of EVs in drug delivery and regenerative medicine. In this review, we provide a bird's eye view of various challenges, starting with EV isolation methods, yield, purity, and limitations in the proteome analysis of EVs for identifying protein targets.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Prashant Kumar Tiwari
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Vivek Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Zhang Y, Li B, Gu W, Fan L, Wang X, Xu M, Zhu M, Jin C. Hepatoma cell-derived exosomal SNORD52 mediates M2 macrophage polarization by activating the JAK2/STAT6 pathway. Discov Oncol 2025; 16:36. [PMID: 39804511 PMCID: PMC11730036 DOI: 10.1007/s12672-024-01700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND A recent study revealed the oncogenic role of box C/D small nucleolar RNA 52 (SNORD52) in hepatocellular carcinoma (HCC) by facilitating the aggressive phenotypes of hepatoma cells. However, the potential role of exosomal SNORD52 in macrophage polarization during HCC progression remains poorly understood. METHODS Exosomes were isolated from hepatoma cells. Western blotting and flow cytometry were performed to determine the levels of M2 macrophage polarization markers. SNORD52 expression was assessed using qRT-PCR. The levels of JAK2/STAT6 pathway-related proteins were analyzed using western blotting. RESULTS SNORD52 was enriched in exosomes derived from hepatoma cells and in plasma samples from patients with HCC. Hepatoma cell-derived exosomal SNORD52 was internalized by THP-1 macrophages. SNORD52 overexpression increased the levels of M2 macrophage polarization markers and JAK2/STAT6 pathway-related proteins Additionally, hepatoma cell-derived exosomal SNORD52 interacted with the JAK2/STAT6 pathway to mediate M2 macrophage polarization. CONCLUSIONS Our findings revealed that hepatoma cell-derived exosomal SNORD52 induces M2 macrophage polarization by activating the JAK2/STAT6 pathway.
Collapse
Affiliation(s)
- Yaqiong Zhang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China
| | - Bo Li
- Department of Ultrasound, Taizhou Hospital, Zhejiang University, Taizhou Enze Medical Center (Group), Taizhou, 318000, Zhejiang, China
| | - Wanhong Gu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China
| | - Linna Fan
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaofan Wang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China
| | - Meifen Xu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China
| | - Minqi Zhu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China.
| | - Chong Jin
- Department of Hepatobiliary Pancreatic Splenic Surgery, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
3
|
Yu J, Wei Y, Cui Z, Tian J, Cai H, Zhang W. Thermosensitive Capturer Coupled with the CD63 Aptamer for Highly Efficient Isolation of Exosomes. ACS Macro Lett 2024:195-200. [PMID: 38261001 DOI: 10.1021/acsmacrolett.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Exosomes are bioactive substances secreted by various cells that play a crucial role in cell communication. Due to their nanoscale size and interference from nonexosome proteins, the rapid capture and nondestructive release of exosomes remain a technical challenge which significantly hinders their biomedical application. To overcome this obstacle, we have designed a CD63 aptamer-based thermosensitive copolymer for the effective isolation of exosomes from mesenchymal stem cells (MSCs). A thermal-responsive copolymer, poly(N-isopropylacrylamide-co-butyl methacrylate-co-N-hydroxysuccinimide methacrylate) P(NIPAM-co-BMA-co-NHSMA, PNB), was prepared, which could realize reversible hydrophilic/hydrophobic phase transition by varying temperature. Then, CD63 aptamers were further modified to the copolymer to form the PNB-aptamer, where the aptamer units, acting as a "lock and key", specifically bind exosomes. Under the low critical solution temperature (LCST) of the PNB-aptamer, it can maintain a hydrophilic state, capturing exosomes from the cell culture medium. Subsequently, exosome-carrying PNB-aptamers can endure from hydrophilic to hydrophobic phase transition by increasing the temperature above its LCST, and then they can be collected after centrifugation. By introducing the complementary sequence of the CD63 aptamer, the stronger binding affinity between the complementary sequence and the aptamers facilitates the release of exosomes from the PNB-aptamer. The yield of exosome samples captured from a MSC culture medium by the PNB-aptamer system (around 62%) is considerably higher than that obtained by the current "gold standard" ultrafiltration (UC) approach (around 42%). Thus, the PNB-aptamer capturer provides a potential strategy for highly efficient exosome isolation.
Collapse
Affiliation(s)
- Junjun Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Ying Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Tendulkar R, Tendulkar M. Current Update of Research on Exosomes in Cancer. Curr Mol Med 2024; 24:26-39. [PMID: 37461337 DOI: 10.2174/1566524023666230717105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 08/01/2023]
Abstract
Exosomes are vesicles secreted by the plasma membrane of the cells delimited by a lipid bilayer membrane into the extracellular space of the cell. Their release is associated with the disposal mechanism to remove unwanted materials from the cells. Exosomes released from primary tumour sites migrate to other parts of the body to create a metastatic environment for spreading the tumour cells. We have reviewed that exosomes interfere with the tumour progression by (i) promoting angiogenesis, (ii) initiating metastasis, (iii) regulating tumour microenvironment (TME) and inflammation, (iv) modifying energy metabolism, and (v) transferring mutations. We have found that EVs play an important role in inducing tumour drug resistance against anticancer drugs. This review discusses the potential of exosomes to generate a significant therapeutic effect along with improved diagnosis, prognosis, insights on the various research conducted and their significant findings of our interest.
Collapse
Affiliation(s)
- Reshma Tendulkar
- Pharmaceutical Chemistry, Vivekanand Education Society's College of Pharmacy, India
| | - Mugdha Tendulkar
- Faculty of Science, Sardar Vallabhbhai College of Science, India
| |
Collapse
|
5
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
6
|
Wang X, Ye X, Chen Y, Lin J. Mechanism of M2 type macrophage-derived extracellular vesicles regulating PD-L1 expression via the MISP/IQGAP1 axis in hepatocellular carcinoma immunotherapy resistance. Int Immunopharmacol 2023; 124:110848. [PMID: 37633233 DOI: 10.1016/j.intimp.2023.110848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevailing cancer affecting human health. M2 macrophages are essential in mediating immune responses in tumors. This study investigated the action of M2 macrophages in immune escape of HCC. METHODS Mitotic spindle positioning (MISP), IQ motif containing GTPase activating protein 1 (IQGAP1) and programmed cell death-1 (PD-L1) levels in primary HCC/tumor-adjacent tissues were determined by Western blot, followed by correlation analysis. M2 macrophage and CD3+CD8+T cell percentages were estimated by flow cytometry. Hep3B and HepG2 cells were treated with M2 macrophage conditioned medium (M2-CM) and M2 macrophage-derived extracellular vesicles (M2-EVs) and/or co-cultured with CD8+T cells, followed by assessment of cell viability and apoptosis. TNF-α and INF-γ levels were measured by ELISA. MISP and IQGAP1 overexpression plasmids were transfected into HCC cells to explore their role in immune escape. The interactions among MISP, IQGAP1, STAT3, and PD-L1 were analyzed by co-immunoprecipitation. The mechanism of M2-EVs in HCC immune escape was verified in nude mice. RESULTS MISP/IQGAP1/PD-L1 were upregulated in HCC tissues. MISP negatively-correlated with IQGAP1/PD-L1 and IQGAP1 positively-correlated with PD-L1. M2 macrophages were reduced but CD8+T cells were increased in HCC tissues with high MISP expression. M2-CM or M2-EVs inhibited the killing ability of CD8+T cells, increased HCC cell viability, impeded HCC cell apoptosis, induced CD8+T cell apoptosis, downregulated TNF-α and INF-γ, and upregulated PD-L1. M2-EVs facilitated HCC cell immune escape by potentiating IQGAP1 nuclear translocation and activating STAT3 phosphorylation through MISP downregulation. In vivo experiments further verified the action of M2-EVs through MISP. CONCLUSION M2-EVs promote HCC cell immune escape by upregulating PD-L1 through the MISP/IQGAP1/STAT3 axis.
Collapse
Affiliation(s)
- Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China.
| |
Collapse
|
7
|
da Silva TB, Rendra E, David CAW, Bieback K, Cross MJ, Wilm B, Liptrott NJ, Murray P. Umbilical cord mesenchymal stromal cell-derived extracellular vesicles lack the potency to immunomodulate human monocyte-derived macrophages in vitro. Biomed Pharmacother 2023; 167:115624. [PMID: 37783151 DOI: 10.1016/j.biopha.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.
Collapse
Affiliation(s)
- Tamiris Borges da Silva
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK.
| |
Collapse
|
8
|
Li Y, Liu F. The extracellular vesicles targeting tumor microenvironment: a promising therapeutic strategy for melanoma. Front Immunol 2023; 14:1200249. [PMID: 37575250 PMCID: PMC10419216 DOI: 10.3389/fimmu.2023.1200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small particles secreted by numerous cell types and circulate in almost all body fluids, acting as crucial messengers for cell-to-cell communication. EVs involves multiple physiological and pathological processes, including tumor progression, via their multiple cargoes. Therefore, EVs have become attractive candidates for the treatment of tumor, including melanoma. Notably, due to the crucial role of the tumor microenvironment (TME) in promoting tumor malignant phenotype, and the close intercellular communication in TME, EVs-based therapy by targeting TME has become a cutting-edge and prospective strategy for inhibiting melanoma progression and strengthening the anti-tumor immunity. In this review, we aimed to summarize and discuss the role of therapeutic EVs, which target the components of TME in melanoma, thereby providing insights into these promising clinical strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Yongmin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
9
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
10
|
Kaur S, Nathani A, Singh M. Exosomal delivery of cannabinoids against cancer. Cancer Lett 2023; 566:216243. [PMID: 37257632 PMCID: PMC10426019 DOI: 10.1016/j.canlet.2023.216243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Exosomes are extracellular vesicles (EVs) originating from endosomes that play a role in cellular communication. These vesicles which mimic the parental cells that release them are promising candidates for targeted drug delivery and therapeutic applications against cancer because of their favorable biocompatibility, specific targeting, low toxicity, and immunogenicity. Currently, Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and other cannabinoids (e.g., CBG, THCV, CBC), are being explored for their anticancer and anti-proliferative properties. Several mechanisms, including cell cycle arrest, proliferation inhibition, activation of autophagy and apoptosis, inhibition of adhesion, metastasis, and angiogenesis have been proposed for their anticancer activity. EVs could be engineered as cannabinoid delivery systems for tumor-specificity leading to superior anticancer effects. This review discusses current techniques for EV isolation from various sources, characterization and strategies to load them with cannabinoids. More extensively, we culminate information available on different sources of EVs that have anticancer activity, mechanism of action of cannabinoids against various wild type and resistant tumors and role of CBD in histone modifications and cancer epigenetics. We have also enumerated the role of EVs containing cannabinoids against various tumors and in chemotherapy induced neuropathic pain.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
11
|
Hu T, Huang Y, Liu J, Shen C, Wu F, He Z. Biomimetic Cell-Derived Nanoparticles: Emerging Platforms for Cancer Immunotherapy. Pharmaceutics 2023; 15:1821. [PMID: 37514008 PMCID: PMC10383408 DOI: 10.3390/pharmaceutics15071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy can significantly prevent tumor growth and metastasis by activating the autoimmune system without destroying normal cells. Although cancer immunotherapy has made some achievements in clinical cancer treatment, it is still restricted by systemic immunotoxicity, immune cell dysfunction, cancer heterogeneity, and the immunosuppressive tumor microenvironment (ITME). Biomimetic cell-derived nanoparticles are attracting considerable interest due to their better biocompatibility and lower immunogenicity. Moreover, biomimetic cell-derived nanoparticles can achieve different preferred biological effects due to their inherent abundant source cell-relevant functions. This review summarizes the latest developments in biomimetic cell-derived nanoparticles for cancer immunotherapy, discusses the applications of each biomimetic system in cancer immunotherapy, and analyzes the challenges for clinical transformation.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuezhou Huang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Shen
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
13
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
14
|
Sharma A, Singh AP, Singh S. Shaping Up the Tumor Microenvironment: Extracellular Vesicles as Important Intermediaries in Building a Tumor-Supportive Cellular Network. Cancers (Basel) 2023; 15:cancers15020501. [PMID: 36672450 PMCID: PMC9856954 DOI: 10.3390/cancers15020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
A tumor is not just comprised of cancer cells but also a heterogeneous group of infiltrating and resident host cells, as well as their secreted factors that form the extracellular matrix [...].
Collapse
Affiliation(s)
- Amod Sharma
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
| | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (A.P.S.); seem (S.S.); Tel.: +1-251-445-9843 (A.P.S.); +1-251-445-9844 (S.S.)
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (A.P.S.); seem (S.S.); Tel.: +1-251-445-9843 (A.P.S.); +1-251-445-9844 (S.S.)
| |
Collapse
|
15
|
Cano A, Ettcheto M, Bernuz M, Puerta R, Esteban de Antonio E, Sánchez-López E, Souto EB, Camins A, Martí M, Pividori MI, Boada M, Ruiz A. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int J Biol Sci 2023; 19:721-743. [PMID: 36778117 PMCID: PMC9910004 DOI: 10.7150/ijbs.79063] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 01/11/2023] Open
Abstract
Extracellular vesicles are secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Their molecular cargo reflects the physiological processes that their cells of origin are undergoing. Thus, many studies have suggested that extracellular vesicles could be a promising biomarker tool for many diseases, mainly due to their biological relevance and easy accessibility to a broad range of body fluids. Moreover, since their biological composition leads them to cross the blood-brain barrier bidirectionally, growing evidence points to extracellular vesicles as emerging mirrors of brain diseases processes. In this regard, this review explores the biogenesis and biological functions of extracellular vesicles, their role in different physiological and pathological processes, their potential in clinical practice, and the recent outstanding studies about the role of exosomes in major human brain diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or brain tumors.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Mireia Bernuz
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain
| | | | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain.,Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Mercè Martí
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María Isabel Pividori
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
16
|
Jung D, Shin S, Kang S, Jung I, Ryu S, Noh S, Choi S, Jeong J, Lee BY, Kim K, Kim CS, Yoon JH, Lee C, Bucher F, Kim Y, Im S, Song B, Yea K, Baek M. Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery. J Extracell Vesicles 2022; 11:e12287. [PMID: 36447429 PMCID: PMC9709340 DOI: 10.1002/jev2.12287] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
T cell-derived small extracellular vesicles (sEVs) exhibit anti-cancer effects. However, their anti-cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin-2-tethered sEVs (IL2-sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2-sEVs increased the anti-cancer ability of CD8+ T cells without affecting regulatory T (Treg ) cells and down-regulated cellular and exosomal PD-L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2-sEV-resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR-181a-3p and miR-223-3p notably reduced the PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2-sEVs inhibited tumour progression in melanoma-bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2-sEVs and existing anti-cancer drugs significantly improved anti-cancer efficacy by decreasing PD-L1 expression in vivo. Thus, IL2-sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Sanghee Shin
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Min Kang
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Inseong Jung
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Suyeon Ryu
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Soojeong Noh
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Jin Choi
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Jongwon Jeong
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Beom Yong Lee
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Kwang‐Soo Kim
- Department of New BiologyDGISTDaeguRepublic of Korea
| | | | - Jong Hyuk Yoon
- Department of Neural Development and DiseaseKorea Brain Research InstituteDaeguRepublic of Korea
| | - Chan‐Hyeong Lee
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Yong‐Nyun Kim
- Division of Translational ScienceNational Cancer Center 323Ilsan‐ro, Ilsandong‐guGoyang‐siGyeonggi‐doRepublic of Korea
| | - Sin‐Hyeog Im
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Gyeongsangbuk‐doRepublic of Korea
- Institute of Convergence ScienceYonsei UniversitySeoulRepublic of Korea
- ImmunoBiomePohangRepublic of Korea
| | - Byoung‐Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and BiophysicsNational Institute on Alcohol Abuse and Alcoholism (NIAAA)BethesdaMarylandUSA
| | - Kyungmoo Yea
- Department of New BiologyDGISTDaeguRepublic of Korea
- New Biology Research CenterDGISTDaeguRepublic of Korea
| | - Moon‐Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
17
|
Localized DNA tetrahedrons assisted catalytic hairpin assembly for the rapid and sensitive profiling of small extracellular vesicle-associated microRNAs. J Nanobiotechnology 2022; 20:503. [PMID: 36457020 PMCID: PMC9714172 DOI: 10.1186/s12951-022-01700-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The profiling of small extracellular vesicle-associated microRNAs (sEV-miRNAs) plays a vital role in cancer diagnosis and monitoring. However, detecting sEV-miRNAs with low expression in clinical samples remains challenging. Herein, we propose a novel electrochemical biosensor using localized DNA tetrahedron-assisted catalytic hairpin assembly (LDT-CHA) for sEV-miRNA determination. The LDT-CHA contained localized DNA tetrahedrons with CHA substrates, leveraging an efficient localized reaction to enable sensitive and rapid sEV-miRNA measurement. Based on the LDT-CHA, the proposed platform can quantitatively detect sEV-miRNA down to 25 aM in 30 min with outstanding specificity. For accurate diagnosis of gastric cancer patients, a combination of LDT-CHA and a panel of four sEV-miRNAs (sEV-miR-1246, sEV-miR-21, sEV-miR-183-5P, and sEV-miR-142-5P) was employed in a gastric cancer cohort. Compared with diagnosis with single sEV-miRNA, the proposed platform demonstrated a higher accuracy of 88.3% for early gastric tumor diagnoses with higher efficiency (AUC: 0.883) and great potential for treatment monitoring. Thus, this study provides a promising method for the bioanalysis and determination of the clinical applications of LDT-CHA.
Collapse
|
18
|
Autoantibody panel on small extracellular vesicles for the early detection of lung cancer. Clin Immunol 2022; 245:109175. [DOI: 10.1016/j.clim.2022.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
|
19
|
Brocco D, De Bellis D, Di Marino P, Simeone P, Grassadonia A, De Tursi M, Grottola T, Di Mola FF, Di Gregorio P, Zappacosta B, Angelone A, Lellis LD, Veschi S, Florio R, De Fabritiis S, Verginelli F, Marchisio M, Caporale M, Luisi D, Di Sebastiano P, Tinari N, Cama A, Lanuti P. High Blood Concentration of Leukocyte-Derived Extracellular Vesicles Is Predictive of Favorable Clinical Outcomes in Patients with Pancreatic Cancer: Results from a Multicenter Prospective Study. Cancers (Basel) 2022; 14:4748. [PMID: 36230671 PMCID: PMC9562679 DOI: 10.3390/cancers14194748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide. Identification of novel tumor biomarkers is highly advocated in PC to optimize personalized treatment algorithms. Blood-circulating extracellular vesicles hold promise for liquid biopsy application in cancer. We used an optimized flow cytometry protocol to study leukocyte-derived EVs (CD45+) and PD-L1+ EVs in blood from 56 pancreatic cancer patients and 48 healthy controls (HCs). Our results show that PC patients presented higher blood levels of total EVs (p = 0.0003), leukocyte-derived EVs (LEVs) (p = 0.001) and PD-L1+ EVs (p = 0.01), as compared with HCs. Interestingly, a blood concentration of LEVs at baseline was independently associated with improved overall survival in patients with borderline resectable or primary unresectable PC (HR = 0.17; 95% CI 0.04-0.79; p = 0.02). Additionally, increased blood-based LEVs were independently correlated with prolonged progression-free survival (HR = 0.10; 95% CI 0.01-0.82; p = 0.03) and significantly associated with higher disease control rate (p = 0.02) in patients with advanced PC receiving standard chemotherapy. Notably, a strong correlation between a decrease in blood LEVs concentration during chemotherapy and disease control was observed (p = 0.005). These intriguing findings point to the potential of LEVs as novel blood-based EV biomarkers for improved personalized medicine in patients affected by PC.
Collapse
Affiliation(s)
- Davide Brocco
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico De Bellis
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Pietro Di Marino
- Clinical Oncology Unit, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Antonino Grassadonia
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Michele De Tursi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Tommaso Grottola
- Surgical Oncology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
| | | | - Patrizia Di Gregorio
- Unit of Transfusion Medicine and Hematology, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Barbara Zappacosta
- Anatomical Pathology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
| | - Antonio Angelone
- Anatomical Pathology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
| | - Laura De Lellis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Simone De Fabritiis
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marta Caporale
- Medical Oncology Unit, S. Spirito Hospital, 65124 Pescara, Italy
| | - Dimitri Luisi
- Medical Oncology Unit, S. Spirito Hospital, 65124 Pescara, Italy
| | - Pierluigi Di Sebastiano
- Surgical Oncology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
- Department of Medical, Oral & Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral & Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
20
|
Tan ZL, Li JF, Luo HM, Liu YY, Jin Y. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy. Front Pharmacol 2022; 13:1006299. [PMID: 36249740 PMCID: PMC9559701 DOI: 10.3389/fphar.2022.1006299] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Extracellular vesicles are tiny lipid bilayer-enclosed membrane particles, including apoptotic bodies, micro vesicles, and exosomes. Organisms of all life forms can secrete extracellular vesicles into their surrounding environment, which serve as important communication tools between cells and between cells and the environment, and participate in a variety of physiological processes. According to new evidence, plant extracellular vesicles play an important role in the regulation of transboundary molecules with interacting organisms. In addition to carrying signaling molecules (nucleic acids, proteins, metabolic wastes, etc.) to mediate cellular communication, plant cells External vesicles themselves can also function as functional molecules in the cellular microenvironment across cell boundaries. This review introduces the source and extraction of plant extracellular vesicles, and attempts to clarify its anti-tumor mechanism by summarizing the current research on plant extracellular vesicles for disease treatment. We speculate that the continued development of plant extracellular vesicle-based therapeutic and drug delivery platforms will benefit their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Yang-Yang Liu
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
21
|
Mecocci S, De Paolis L, Fruscione F, Pietrucci D, De Ciucis CG, Giudici SD, Franzoni G, Chillemi G, Cappelli K, Razzuoli E. In vitro evaluation of immunomodulatory activities of goat milk Extracellular Vesicles (mEVs) in a model of gut inflammation. Res Vet Sci 2022; 152:546-556. [PMID: 36179548 DOI: 10.1016/j.rvsc.2022.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Gut represents a major immunological defense barrier with mucosal immune system and intestinal epithelial cells (IECs). In all intestinal diseases, in particular inflammatory bowel disease (IBD), both the absorption and the local immune system are compromised and alternative effective therapies are sought after. Extracellular Vesicles (EVs) have the capability to regulate immune cells within the inflammatory microenvironment, by dampening inflammation and restoring intestinal barrier integrity. Recently, the immune-modulatory role of EVs has also been confirmed for milk EVs (mEVs), notable for their easy production, high sample volumes, cost-effective scalable production and non-toxic and non-immunogenic behavior. In this context, the aim of this study was to evaluate goat mEV anti-inflammatory and immuno-modulating effects on an in vitro model (IPEC-J2) of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release dosage with ELISA test. After the establishment of a pro-inflammatory environment due to LPS stimuli, IL6, CXCL8, IL12p35, IL12p40, IFNB, IL18, TLR7 and NOS2 resulted significantly up-regulated in stimulated IPEC-J2 cells compared to those of the basal culture. After 48 h of mEV treatment in inflamed IPEC-J2 a partial restoration of initial conditions was detected, with the IL18 and IL12p40 significant down-regulation, and IL12p35, EBI3, TLR7, BD1 and BD3 up-regulation. IL-18 reduced protein production was also detected in supernatants. Moreover, a decrease of MMP9 and NOS2 together with a strong up-regulation of MUC2 indicated a recovery of cellular homeostasis and, therefore, potential beneficial effects on the intestinal mucosa. Nevertheless, 48 h post-treatment, an increased gene expression and protein release of IL-8 was observed. This paper is one of the firsts to assess the effect of goat mEVs and the first one, in particular, of doing this on an in vitro model of gut inflammation. The obtained results show a potential capability of goat mEVs to modulate inflammation and to play beneficial effects on the intestinal mucosa.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Daniele Pietrucci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy; Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| |
Collapse
|
22
|
McAlarnen LA, Gupta P, Singh R, Pradeep S, Chaluvally-Raghavan P. Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies. Mol Ther Oncolytics 2022; 26:347-359. [PMID: 36090475 PMCID: PMC9420349 DOI: 10.1016/j.omto.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer most commonly presents at an advanced stage where survival is approximately 30% compared with >80% if diagnosed and treated before disease spreads. Diagnostic capabilities have progressed from surgical staging via laparotomy to image-guided biopsies and immunohistochemistry staining, along with advances in technology and medicine. Despite improvements in diagnostic capabilities, population-level screening for ovarian cancer is not recommended. Extracellular vesicles (EVs) are 40–150 nm structures formed when the cellular lipid bilayer invaginates. These structures function in cell signaling, immune responses, cancer progression, and establishing the tumor microenvironment. EVs are found in nearly every bodily fluid, including serum, plasma, ascites, urine, and effusion fluid, and contain molecular cargo from their cell of origin. This cargo can be analyzed to yield information about a possible malignancy. In this review we describe how the cargo of EVs has been studied as biomarkers in ovarian cancer. We bring together studies analyzing evidence for various cargos as ovarian cancer biomarkers. Then, we describe the role of EVs in modulation of the tumor microenvironment. This review also summarizes the therapeutic and translational potential of EVs for their optimal utilization as non-invasive biomarkers for novel treatments against cancer.
Collapse
|
23
|
Shen M, Wu X, Zhu M, Yi X. Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomater Sci 2022; 10:5756-5785. [PMID: 36017968 DOI: 10.1039/d2bm01044e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials have shown significant advantages in cancer theranostics, owing to their enhanced permeability and retention effect in tumors and multi-function integration capability. Biological membranes, which are collected from various cells and their secreted membrane structures, can further be applied to establish membrane-based nanomaterials with perfect biocompatibility, tumor-targeting capacity, immune-stimulatory activity and adjustable versatility for cancer therapy. In this review, according to their source, membranes are divided into four groups: (1) cell membranes; (2) secretory membranes; (3) engineered membranes; and (4) hybrid membranes. First, cell membranes can be extracted from natural cells of the body, tumor tissue cells, and bacteria. Furthermore, secretory membranes mainly refer to exosome, apoptotic body and bacterial outer membrane vesicle, and membranes with specific protein/peptide expression or therapeutic inclusions are obtained from engineered cells. Finally, a hybrid membrane will be constituted by two or more of the abovementioned membranes. These membranes can form drug-carrying nanoparticles themselves or coat multi-functional nanoparticles, further realizing efficient cancer therapy. We summarize the application of various biological membrane-based nanomaterials in cancer therapy and point out their advantages as well as the places that need to be further improved, providing systematic knowledge of this field and a strategy for further optimization.
Collapse
Affiliation(s)
- Mengling Shen
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaojie Wu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Minqian Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
24
|
Novel antitumor therapeutic strategy using CD4+ T cell-derived extracellular vesicles. Biomaterials 2022; 289:121765. [DOI: 10.1016/j.biomaterials.2022.121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
25
|
Abstract
Exosomes are a type of extracellular vesicles secreted by cells in normal or pathological conditions for cell-cell communication. With immunomodulatory characteristics and potential therapeutic properties, immune-cell-derived exosomes play an important role in cancer therapy. They express various antigens on their surface, which can be employed for antigen presentation, immunological activation, and metabolic regulation, leading to the killing of cancerous cells. In addition, immune-cell-derived exosomes have received extensive attention as a drug delivery platform in effective antitumor therapy due to their excellent biocompatibility, low immunogenicity, and high loading capacity. In this review, the biological and therapeutic characteristics of immune-cell-derived exosomes are comprehensively outlined. The antitumor mechanism of exosomes secreted by immune cells, including macrophages, dendritic cells, T cells, B cells, and natural killer cells, are systematically summarized. Moreover, the applications of immune-cell-derived exosomes as nanocarriers to transport antitumor agents (chemotherapeutic drugs, genes, proteins, etc.) are discussed. More importantly, the existing challenges of immune-cell-derived exosomes are pointed out, and their antitumor potentials are also discussed.
Collapse
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales 2145, Australia
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| |
Collapse
|
26
|
Gangadaran P, Rajendran RL, Kwack MH, Jeyaraman M, Hong CM, Sung YK, Ahn BC. Application of Cell-Derived Extracellular Vesicles and Engineered Nanovesicles for Hair Growth: From Mechanisms to Therapeutics. Front Cell Dev Biol 2022; 10:963278. [PMID: 35912106 PMCID: PMC9329781 DOI: 10.3389/fcell.2022.963278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Hair loss is one of the most common disorders that affect both male and female patients. Cell-derived nanovesicles (CDVs) are natural extracellular vesicles and engineered nanovesicles that can carry various biologicals materials such as proteins, lipids, mRNA, miRNA, and DNA. These vesicles can communicate with local or distant cells and are capable of delivering endogenous materials and exogenous drugs for regenerative therapies. Recent studies revealed that CDVs can serve as new treatment strategies for hair growth. Herein, we review current knowledge on the role of CDVs in applications to hair growth. The in-depth understanding of the mechanisms by which CDVs enable therapeutic effects for hair growth may accelerate successful clinical translation of these vesicles for treating hair loss.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Hee Kwack
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Noida, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Young Kwan Sung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
27
|
Panigrahi AR, Srinivas L, Panda J. Exosomes: Insights and therapeutic applications in cancer. Transl Oncol 2022; 21:101439. [PMID: 35551002 PMCID: PMC9108525 DOI: 10.1016/j.tranon.2022.101439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
Cancer refers to the division of abnormal cells at an uncontrollable rate that possesses the ability to infiltrate and destroy normal tissues. It frequently spreads to normal tissues throughout the body, a condition known as metastasis, which is a significant concern. It is the second leading cause of mortality globally and treatment therapy can assist in improving survival rates. Exosomes are the extracellular vesicles secreted by several cells that act as messengers between cells. When engineered, exosomes act as promising drug delivery vehicles that help achieve targeted action at the tumour site and reduce the limitations of conventional treatments such as castration, chemotherapy, radiation, etc. The present review provides an overview of exosomes, the biogenesis, sources, isolation methods and characterization. The current status and applications of chemotherapeutic agents loaded, engineered exosomes in cancer treatment were convoluted.
Collapse
Affiliation(s)
- Anita Raj Panigrahi
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, 530045, India
| | - Lankalapalli Srinivas
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, 530045, India.
| | - Jagadeesh Panda
- Raghu College of Pharmacy, Dakamarri, Visakhapatnam - 531162, India
| |
Collapse
|
28
|
Mecocci S, Ottaviani A, Razzuoli E, Fiorani P, Pietrucci D, De Ciucis CG, Dei Giudici S, Franzoni G, Chillemi G, Cappelli K. Cow Milk Extracellular Vesicle Effects on an In Vitro Model of Intestinal Inflammation. Biomedicines 2022; 10:biomedicines10030570. [PMID: 35327370 PMCID: PMC8945533 DOI: 10.3390/biomedicines10030570] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nano-dimensional spherical structures and act mainly as signaling mediators between cells, in particular modulating immunity and inflammation. Milk-derived EVs (mEVs) can have immunomodulatory and anti-inflammatory effects, and milk is one of the most promising food sources of EVs. In this context, this study aimed to evaluate bovine mEVs anti-inflammatory and immunomodulating effects on an in vitro co-culture (Caco-2 and THP-1) model of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release through ELISA. After establishing a pro-inflammatory environment due to IFN-γ and LPS stimuli, CXCL8, IL1B, TNFA, IL12A, IL23A, TGFB1, NOS2, and MMP9 were significantly up-regulated in inflamed Caco-2 compared to the basal co-culture. Moreover, IL-17, IL-1β, IL-6, TNF-α release was increased in supernatants of THP-1. The mEV administration partially restored initial conditions with an effective anti-inflammatory activity. Indeed, a decrease in gene expression and protein production of most of the tested cytokines was detected, together with a significant gene expression decrease in MMP9 and the up-regulation of MUC2 and TJP1. These results showed a fundamental capability of mEVs to modulate inflammation and their potential beneficial effect on the intestinal mucosa.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
- Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy
| | - Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy;
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| | - Paola Fiorani
- Institute of Translational Pharmacology, National Research Council, CNR, 00133 Rome, Italy;
| | - Daniele Pietrucci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, National Research Council, CNR, 70126 Bari, Italy;
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy;
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (G.F.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (G.F.)
| | - Giovanni Chillemi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, National Research Council, CNR, 70126 Bari, Italy;
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
- Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| |
Collapse
|
29
|
Serratì S, Palazzo A, Lapenna A, Mateos H, Mallardi A, Marsano RM, Quarta A, Del Rosso M, Azzariti A. Salting-Out Approach Is Worthy of Comparison with Ultracentrifugation for Extracellular Vesicle Isolation from Tumor and Healthy Models. Biomolecules 2021; 11:biom11121857. [PMID: 34944501 PMCID: PMC8699204 DOI: 10.3390/biom11121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
The role of extracellular vesicles (EVs) has been completely re-evaluated in the recent decades, and EVs are currently considered to be among the main players in intercellular communication. Beyond their functional aspects, there is strong interest in the development of faster and less expensive isolation protocols that are as reliable for post-isolation characterisations as already-established methods. Therefore, the identification of easy and accessible EV isolation techniques with a low price/performance ratio is of paramount importance. We isolated EVs from a wide spectrum of samples of biological and clinical interest by choosing two isolation techniques, based on their wide use and affordability: ultracentrifugation and salting-out. We collected EVs from human cancer and healthy cell culture media, yeast, bacteria and Drosophila culture media and human fluids (plasma, urine and saliva). The size distribution and concentration of EVs were measured by nanoparticle tracking analysis and dynamic light scattering, and protein depletion was measured by a colorimetric nanoplasmonic assay. Finally, the EVs were characterised by flow cytometry. Our results showed that the salting-out method had a good efficiency in EV separation and was more efficient in protein depletion than ultracentrifugation. Thus, salting-out may represent a good alternative to ultracentrifugation.
Collapse
Affiliation(s)
- Simona Serratì
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: (S.S.); (A.P.)
| | - Antonio Palazzo
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: (S.S.); (A.P.)
| | - Annamaria Lapenna
- Department of Chemistry, University of Bari and CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125 Bari, Italy; (A.L.); (H.M.)
| | - Helena Mateos
- Department of Chemistry, University of Bari and CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125 Bari, Italy; (A.L.); (H.M.)
| | - Antonia Mallardi
- Istituto per i Processi Chimico Fisici, National Research Council (IPCF-CNR), c/o ChemistryDepartment, Via Orabona 4, 70125 Bari, Italy;
| | | | - Alessandra Quarta
- CNR NANOTEC—Istituto di Nanotecnologia, National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy;
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy;
| | - Amalia Azzariti
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
30
|
Camacho V, Kuznetsova V, Welner RS. Inflammatory Cytokines Shape an Altered Immune Response During Myeloid Malignancies. Front Immunol 2021; 12:772408. [PMID: 34804065 PMCID: PMC8595317 DOI: 10.3389/fimmu.2021.772408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The immune microenvironment is a critical driver and regulator of leukemic progression and hematological disease. Recent investigations have demonstrated that multiple immune components play a central role in regulating hematopoiesis, and dysfunction at the immune cell level significantly contributes to neoplastic disease. Immune cells are acutely sensitive to remodeling by leukemic inflammatory cytokine exposure. Importantly, immune cells are the principal cytokine producers in the hematopoietic system, representing an untapped frontier for clinical interventions. Due to a proinflammatory cytokine environment, dysregulation of immune cell states is a hallmark of hematological disease and neoplasia. Malignant immune adaptations have profound effects on leukemic blast proliferation, disease propagation, and drug-resistance. Conversely, targeting the immune landscape to restore hematopoietic function and limit leukemic expansion may have significant therapeutic value. Despite the fundamental role of the immune microenvironment during the initiation, progression, and treatment response of hematological disease, a detailed examination of how leukemic cytokines alter immune cells to permit, promote, or inhibit leukemia growth is lacking. Here we outline an immune-based model of leukemic transformation and highlight how the profound effect of immune alterations on the trajectory of malignancy. The focus of this review is to summarize current knowledge about the impacts of pro- and anti-inflammatory cytokines on immune cells subsets, their modes of action, and immunotherapeutic approaches with the potential to improve clinical outcomes for patients suffering from hematological myeloid malignancies.
Collapse
Affiliation(s)
- Virginia Camacho
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
32
|
Chang YC, Chan MH, Li CH, Fang CY, Hsiao M, Chen CL. Exosomal Components and Modulators in Colorectal Cancer: Novel Diagnosis and Prognosis Biomarkers. Biomedicines 2021; 9:biomedicines9080931. [PMID: 34440135 PMCID: PMC8391321 DOI: 10.3390/biomedicines9080931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The relatively high incidence and mortality rates for colorectal carcinoma (CRC) make it a formidable malignant tumor. Comprehensive strategies have been applied to predict patient survival and diagnosis. Various clinical regimens have also been developed to improve the therapeutic outcome. Extracellular vesicles (EVs) are recently proposed cellular structures that can be produced by natural or artificial methods and have been extensively studied. In addition to their innate functions, EVs can be manipulated to be drug carriers and exert many biological functions. The composition of EVs, their intravesicular components, and the surrounding tumor microenvironment are closely related to the development of colorectal cancer. Determining the expression profiles of exocytosis samples and using them as indicators for selecting effective combination therapy is an indispensable direction for EV study and should be regarded as a novel prediction platform in addition to cancer stage, prognosis, and other clinical assessments. In this review, we summarize the function, regulation, and application of EVs in the colon cancer research field. We provide an update on and discuss potential values for clinical applications of EVs. Moreover, we illustrate the specific markers, mediators, and genetic alterations of EVs in colorectal carcinogenesis. Furthermore, we outline the vital markers present in the EVs and discuss their plausible uses in colon cancer patient therapy in combination with the currently used clinical strategies. The development and application of these EVs will significantly improve the accuracy of diagnosis, lead to more precise prognoses, and may lead to the improved treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2736-1661 (ext. 3139) (C.-L.C.); Fax: +886-2-2789-9931 (M.H.)
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2736-1661 (ext. 3139) (C.-L.C.); Fax: +886-2-2789-9931 (M.H.)
| |
Collapse
|
33
|
Moraes JA, Encarnação C, Franco VA, Xavier Botelho LG, Rodrigues GP, Ramos-Andrade I, Barja-Fidalgo C, Renovato-Martins M. Adipose Tissue-Derived Extracellular Vesicles and the Tumor Microenvironment: Revisiting the Hallmarks of Cancer. Cancers (Basel) 2021; 13:3328. [PMID: 34283044 PMCID: PMC8268128 DOI: 10.3390/cancers13133328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are crucial elements that sustain the communication between tumor cells and their microenvironment, and have emerged as a widespread mechanism of tumor formation and metastasis. In obesity, the adipose tissue becomes hypertrophic and hyperplastic, triggering increased production of pro-inflammatory adipokines, such as tumor necrosis factor α, interleukin 6, interleukin 1, and leptin. Furthermore, obese adipose tissue undergoes dysregulation in the cargo content of the released EVs, resulting in an increased content of pro-inflammatory proteins, fatty acids, and oncogenic microRNAs. These alterations drive obesity-associated inflammatory responses both locally and systemically. After being ignored for a long time, adipose tissues have recently received considerable attention as a major player in tumor microenvironment-linked obesity and cancer. The role of adipose tissue in the establishment and progression of cancer is reinforced by its high plasticity and inflammatory content. Such a relationship may be established by direct contact between adipocytes and cancer cells within the microenvironment or systemically, via EV-mediated cell-to-cell communication. Here, we highlight cues evidencing the influence of adipose tissue-derived EVs on the hallmarks of cancer, which are critical for tumor malignancy.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Redox Biology Laboratory, Programa de Pesquisa em Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| | - Carol Encarnação
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Victor Aguiar Franco
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Luiz Gabriel Xavier Botelho
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Gabriella Pacheco Rodrigues
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Isadora Ramos-Andrade
- Laboratory of Cellular and Molecular Pharmacology, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-170 Rio de Janeiro, Brazil; (I.R.-A.); (C.B.-F.)
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-170 Rio de Janeiro, Brazil; (I.R.-A.); (C.B.-F.)
| | - Mariana Renovato-Martins
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| |
Collapse
|
34
|
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J, Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol Lett 2021; 21:377. [PMID: 33777201 PMCID: PMC7988709 DOI: 10.3892/ol.2021.12638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zheng
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingzi Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoyan Liu
- Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
35
|
Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030466. [PMID: 33800141 PMCID: PMC7998238 DOI: 10.3390/diagnostics11030466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.
Collapse
|
36
|
El Sayed R, Haibe Y, Amhaz G, Bouferraa Y, Shamseddine A. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Int J Mol Sci 2021; 22:2142. [PMID: 33670011 PMCID: PMC7927105 DOI: 10.3390/ijms22042142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.
Collapse
Affiliation(s)
- Rola El Sayed
- Global Health Institute, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ghid Amhaz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Youssef Bouferraa
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| |
Collapse
|
37
|
Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Cells 2021; 10:cells10010109. [PMID: 33430152 PMCID: PMC7827205 DOI: 10.3390/cells10010109] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans. Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis cancer biomarkers. Interestingly, several of the known tumor-associated glycans have already been identified in cancer EVs, highlighting EV glycosylation as a potential source of circulating cancer biomarkers. These particles are crucial vehicles of cell–cell communication, being able to transfer molecular information and to modulate the recipient cell behavior. The presence of particular glycoconjugates has been described to be important for EV protein sorting, uptake and organ-tropism. Furthermore, specific EV glycans or glycoproteins have been described to be able to distinguish tumor EVs from benign EVs. In this review, the application of EV glycosylation in the development of novel EV detection and capture methodologies is discussed. In addition, we highlight the potential of EV glycosylation in the clinical setting for both cancer biomarker discovery and EV therapeutic delivery strategies.
Collapse
Affiliation(s)
- Álvaro M. Martins
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Cátia C. Ramos
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela Freitas
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| | - Celso A. Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| |
Collapse
|