1
|
Parry TL, Gilmore LA, Khamoui AV. Pan-cancer secreted proteome and skeletal muscle regulation: insight from a proteogenomic data-driven knowledge base. Funct Integr Genomics 2025; 25:14. [PMID: 39812750 DOI: 10.1007/s10142-024-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers. Tumor proteins having significant pan-cancer associations with muscle were referenced against secretome proteins secreted to blood from the Human Protein Atlas, then verified as increased in paired tumor vs. normal tissues in pan-cancer manner. This workflow revealed seven secreted proteins from cancers afflicting kidneys, head and neck, lungs and pancreas that classified as protein-binding activity modulator, extracellular matrix protein or intercellular signaling molecule. Concordance of these biomarkers with validated molecular signatures of cachexia and senescence supported relevance to muscle and cachexia disease biology, and high tumor expression of the biomarker set associated with lower overall survival. In this article, we discuss avenues by which skeletal muscle and cachexia may be regulated by these candidate pan-cancer proteins secreted to blood, and conceptualize a strategy that considers them collectively as a biomarker signature with potential for refinement by data analytics and radiogenomics for predictive testing of future risk in a non-invasive, blood-based panel amenable to broad uptake and early management.
Collapse
Affiliation(s)
- Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
2
|
Xiang S, Yang L, He Y, Ding F, Qiao S, Su Z, Chen Z, Lu A, Li F. Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer. Cells 2025; 14:88. [PMID: 39851516 PMCID: PMC11763672 DOI: 10.3390/cells14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Alpha-1 antitrypsin (AAT) is a key serine protease inhibitor for regulating proteases such as neutrophil elastase. AAT restrains the pulmonary matrix from enzymatic degradation, and a deficiency in AAT leads to inflammatory tissue damage in the lungs, resulting in chronic obstructive pulmonary disease. Due to the crucial biological function of AAT, the emerging research interest in this protein has shifted to its role in cancer-associated inflammation and the dynamics of the tumor microenvironment. However, the lack of comprehensive reviews in this field hinders our understanding of AAT as an essential immune modulator with great potential in cancer immunotherapy. Therefore, in this review, we have elucidated the pivotal roles of AAT in inflammation and the tumor microenvironment, including the structure and molecular properties of AAT, its molecular functions in the regulation of the inflammatory response and tumor microenvironment, and its clinical implications in cancer including its diagnosis, prognosis, and therapeutic intervention. This review seeks to bridge the gap in the understanding of AAT between inflammatory diseases and cancer, and to foster deeper investigations into its translational potential in cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Siyu Xiang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yun He
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Feng Ding
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zonghua Su
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
3
|
Lacinski RA, Dziadowicz SA, Roth CA, Ma L, Melemai VK, Fitzpatrick B, Chaharbakhshi E, Heim T, Lohse I, Schoedel KE, Hu G, Llosa NJ, Weiss KR, Lindsey BA. Proteomic and transcriptomic analyses identify apo-transcobalamin-II as a biomarker of overall survival in osteosarcoma. Front Oncol 2024; 14:1417459. [PMID: 39493449 PMCID: PMC11527601 DOI: 10.3389/fonc.2024.1417459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background The large-scale proteomic platform known as the SomaScan® assay is capable of simultaneously measuring thousands of proteins in patient specimens through next-generation aptamer-based multiplexed technology. While previous studies have utilized patient peripheral blood to suggest serum biomarkers of prognostic or diagnostic value in osteosarcoma (OSA), the most common primary pediatric bone cancer, they have ultimately been limited in the robustness of their analyses. We propose utilizing this aptamer-based technology to describe the systemic proteomic milieu in patients diagnosed with this disease. Methods To determine novel biomarkers associated with overall survival in OSA, we deployed the SomaLogic SomaScan® 7k assay to investigate the plasma proteomic profile of naive primary, recurrent, and metastatic OSA patients. Following identification of differentially expressed proteins (DEPs) between 2-year deceased and survivor cohorts, publicly available databases including Survival Genie, TIGER, and KM Plotter Immunotherapy, among others, were utilized to investigate the significance of our proteomic findings. Results Apo-transcobalamin-II (APO-TCN2) was identified as the most DEP between 2-year deceased and survivor cohorts (Log2 fold change = 6.8, P-value = 0.0017). Survival analysis using the Survival Genie web-based platform indicated that increased intratumoral TCN2 expression was associated with better overall survival in both OSA (TARGET-OS) and sarcoma (TCGA-SARC) datasets. Cell-cell communication analysis using the TIGER database suggested that TCN2+ Myeloid cells likely interact with marginal zone and immunoglobin-producing B lymphocytes expressing the TCN2 receptor (CD320) to promote their proliferation and survival in both non-small cell lung cancer and melanoma tumors. Analysis of publicly available OSA scRNA-sequencing datasets identified similar populations in naive primary tumors. Furthermore, circulating APO-TCN2 levels in OSA were then associated with a plasma proteomic profile likely necessary for robust B lymphocyte proliferation, infiltration, and formation of intratumoral tertiary lymphoid structures for improved anti-tumor immunity. Conclusions Overall, APO-TCN2, a circulatory protein previously described in various lymphoproliferative disorders, was associated with 2-year survival status in patients diagnosed with OSA. The relevance of this protein and apparent immunological function (anti-tumor B lymphocyte responses) was suggested using publicly available solid tumor RNA-sequencing datasets. Further studies characterizing the biological function of APO-TCN2 and its relevance in these diseases is warranted.
Collapse
Affiliation(s)
- Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Clark A. Roth
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Li Ma
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Vincent K. Melemai
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Brody Fitzpatrick
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Edwin Chaharbakhshi
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Tanya Heim
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ines Lohse
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karen E. Schoedel
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Nicolas J. Llosa
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kurt R. Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brock A. Lindsey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Sierzega M, Drabik A, Sanak M, Chrzan R, Richter P. Dissecting the importance and origin of circulating myokines in gastric cancer cachexia. Front Endocrinol (Lausanne) 2024; 15:1437197. [PMID: 39411315 PMCID: PMC11473381 DOI: 10.3389/fendo.2024.1437197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Background Some experimental data suggest that myokines may play an important role in developing cancer-associated cachexia (CAC), but their relevance in humans remains poorly explored. In our study, we tested the hypothesis that circulating myokines are associated with the pathogenesis of CAC in a model population of gastric cancer. Methods A group of 171 treatment naïve patients with adenocarcinoma of the stomach were prospectively examined. Cachexia was defined as weight loss >5% or weight loss >2% with either BMI <20 kg/m2 or sarcopenia. A panel of 19 myokines was measured in portal and peripheral blood as well as tumour tissue and surrounding gastric mucosa. Moreover, a serum proteomic signature of cachexia was identified by a label-free quantitative proteomics with a nano LC-MS/MS system and stored in a ProteomeXchange database (PXD049334). Results One hundred (58%) patients were diagnosed with CAC. The concentrations of fatty acid-binding protein 3 (FABP3), follistatin-like 1 protein (FSTL-1), interleukin 6 (IL 6), and interleukin 8 (IL 8) were significantly higher in the peripheral blood of cachectic subjects, while leptin levels were lower. Of all the evaluated myokines, tumour tissues showed higher expression levels only for IL-15 and myostatin. However, the analysis of paired samples failed to demonstrate a decreasing concentration gradient between the portal and peripheral blood for any of the myokines, evidencing against their release by the primary tumour. Proteomic analysis identified 28 proteins upregulated and 24 downregulated in the peripheral blood of patients with cachexia. Differentially expressed proteins and 5 myokines with increased serum levels generated a significant protein-protein interaction network. Conclusions Our study provides clinical evidence that some myokines are involved in the pathogenesis of cachexia and are well integrated into the regulatory network of circulating blood proteins identified among cachectic patients with gastric cancer.
Collapse
Affiliation(s)
- Marek Sierzega
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Drabik
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Marek Sanak
- Second Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Richter
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Chen Y, Liu C, Zheng X, Liu T, Xie H, Lin SQ, Zhang H, Shi J, Liu X, Wang Z, Deng L, Shi H. Machine learning to identify precachexia and cachexia: a multicenter, retrospective cohort study. Support Care Cancer 2024; 32:630. [PMID: 39225814 PMCID: PMC11371878 DOI: 10.1007/s00520-024-08833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Detection of precachexia is important for the prevention and treatment of cachexia. However, how to identify precachexia is still a challenge. OBJECTIVE This study aimed to detect cancer precachexia using a simple method and distinguish the different characteristics of precachexia and cachexia. METHODS We included 3896 participants in this study. We used all baseline characteristics as input variables and trained machine learning (ML) models to calculate the importance of the variables. After filtering the variables based on their importance, the models were retrained. The best model was selected based on the receiver operating characteristic value. Subsequently, we used the same method and process to identify patients with precachexia in a noncachexia population using the same method and process. RESULTS Participants in this study included 2228 men (57.2%) and 1668 women (42.8%), of whom 471 were diagnosed with precachexia, 1178 with cachexia, and the remainder with noncachexia. The most important characteristics of cachexia were eating changes, arm circumference, high-density lipoprotein (HDL) level, and C-reactive protein albumin ratio (CAR). The most important features distinguishing precachexia were eating changes, serum creatinine, HDL, handgrip strength, and CAR. The two logistic regression models for screening for cachexia and diagnosing precachexia had the highest area under the curve values of 0.830 and 0.701, respectively. Calibration and decision curves showed that the models had good accuracy. CONCLUSION We developed two models for identifying precachexia and cachexia, which will help clinicians detect and diagnose precachexia.
Collapse
Affiliation(s)
- Yue Chen
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Chenan Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Hailun Xie
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Heyang Zhang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Jinyu Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Xiaoyue Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Ziwen Wang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100038, China
| | - Li Deng
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
6
|
Geppert J, Rohm M. Cancer cachexia: biomarkers and the influence of age. Mol Oncol 2024; 18:2070-2086. [PMID: 38414161 PMCID: PMC11467804 DOI: 10.1002/1878-0261.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cachexia (Ccx) is a complex metabolic condition characterized by pronounced muscle and fat wasting, systemic inflammation, weakness and fatigue. Up to 30% of cancer patients succumb directly to Ccx, yet therapies that effectively address this perturbed metabolic state are rare. In recent decades, several characteristics of Ccx have been established in mice and humans, of which we here highlight adipose tissue dysfunction, muscle wasting and systemic inflammation, as they are directly linked to biomarker discovery. To counteract cachexia pathogenesis as early as possible and mitigate its detrimental impact on anti-cancer treatments, identification and validation of clinically endorsed biomarkers assume paramount importance. Ageing was recently shown to affect both the validity of Ccx biomarkers and Ccx development, but the underlying mechanisms are still unknown. Thus, unravelling the intricate interplay between ageing and Ccx can help to counteract Ccx pathogenesis and tailor diagnostic and treatment strategies to individual needs.
Collapse
Affiliation(s)
- Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Maria Rohm
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
7
|
Beutgen VM, Shinkevich V, Pörschke J, Meena C, Steitz AM, Pogge von Strandmann E, Graumann J, Gómez-Serrano M. Secretome Analysis Using Affinity Proteomics and Immunoassays: A Focus on Tumor Biology. Mol Cell Proteomics 2024; 23:100830. [PMID: 39147028 PMCID: PMC11417252 DOI: 10.1016/j.mcpro.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The study of the cellular secretome using proteomic techniques continues to capture the attention of the research community across a broad range of topics in biomedical research. Due to their untargeted nature, independence from the model system used, historically superior depth of analysis, as well as comparative affordability, mass spectrometry-based approaches traditionally dominate such analyses. More recently, however, affinity-based proteomic assays have massively gained in analytical depth, which together with their high sensitivity, dynamic range coverage as well as high throughput capabilities render them exquisitely suited to secretome analysis. In this review, we revisit the analytical challenges implied by secretomics and provide an overview of affinity-based proteomic platforms currently available for such analyses, using the study of the tumor secretome as an example for basic and translational research.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany; Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Veronika Shinkevich
- Institute of Pharmacology, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Johanna Pörschke
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Celina Meena
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Anna M Steitz
- Translational Oncology Group, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany; Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany.
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
| |
Collapse
|
8
|
Lipshitz M, Visser J, Anderson R, Nel DG, Smit T, Steel HC, Rapoport BL. Relationships of emerging biomarkers of cancer cachexia with quality of life, appetite, and cachexia. Support Care Cancer 2024; 32:349. [PMID: 38744744 PMCID: PMC11093781 DOI: 10.1007/s00520-024-08549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Quality of life (QoL), appetite, cachexia, and biomarkers [albumin, hemoglobin (Hb), neutrophils, lymphocytes, platelets, C-reactive protein (CRP), tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), interleukin 8 (IL-8), C-X-C motif chemokine ligand 5 (CXCL5) and citrullinated histoneH3 (H3Cit)] were compared for 40 cases with advanced cancer and 40 healthy controls. Baseline differences and significant relationships were explored for biomarkers with QoL, appetite, and cachexia. METHODS In a prospective case-control, age and sex matched study, the European Organisation for the Research and Treatment of Cancer Quality of Life-C30 questionnaire (EORTC-QLQ-C30) for QoL, the Functional Assessment of Anorexia and Cachexia Therapy assessment (FAACT A/CS-12) for appetite, and a five-factor cachexia assessment tool for cachexia assessment were performed. Routine hematological measurements and blood chemistry analyses together with ELISA procedures and a Multiplex® bead array platform, were used for biomarker analysis. Descriptive statistics and regression analyses were undertaken. P < 0.05 defined statistical significance. RESULTS Global health status (QL-G), functional scales (QL-FS), and symptom scales (QL-SS) differed for cases and controls (p < 0.01). In cases, differences were observed for QL-G (p < 0.01), QL-FS (p < 0.01), and QL-SS (p = 0.01) compared to standardized references values. FAACT A/CS-12 scores differed significantly between cases and controls (p < 0.01) and 30% of cases scored "poor" appetites. Cachexia was present in 60% of cases. Albumin, lymphocytes, platelets, Hb, platelet to lymphocyte ratio (PLR), systemic immune-inflammation index (SII), CRP, TNFα, all at p < 0.01, neutrophil to lymphocyte ratio (NLR) (p = 0.02), IL-6 (p < 0.04), and IL-8 (p = 0.02) differed significantly between cases and controls. No difference was found for CXCL5 or H3Cit. Albumin NLR, Hb, PLR, SII, TNFα, IL-8, and CRP showed significant relationships with all aspects of QoL. QL-FS was significantly related to CXCL5 (p = 0.04), significant relationships with FAACT A/CS-12 included: NLR (p = 0.002), Hb (p < 0.001), and PLR (p < 0.01). NLR, PLR, SII, TNFα, IL-6, IL-8, and CRP correlated positively to cachexia and albumin while Hb and lymphocyte count correlated negatively to cachexia. CONCLUSION CXCL5 and H3Cit were not reliable biomarkers for cancer cachexia, nor significantly related to QoL, appetite or cachexia. Albumin, NLR, Hb, PLR, SII, TNFα, IL-8, and CRP were reliable indicators of QoL, appetite, and cachexia. Future research should include other novel biomarkers namely growth differentiation factor-15 (GDF-15), fibroblast growth factor 21 (FGF-21), fractakline, interferon gamma (IFN-y), IL-16, macrophage colony stimulating factor (M-CSF), and macrophage procoagulant-inducing factor (MPIF).
Collapse
Affiliation(s)
- M Lipshitz
- Division of Human Nutrition, Stellenbosch University, Stellenbosch, 7600, South Africa.
- Melanie Levy Dietician, Johannesburg, 2192, South Africa.
| | - J Visser
- Division of Human Nutrition, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - R Anderson
- Department of Immunology, School of Medicine, Faculty of Faculty of Health Sciences, University of Pretoria, Pretoria, 001, South Africa
| | - D G Nel
- Centre for Statistical Consultation, Stellenbosch University, Stellenbosch, South Africa
| | - T Smit
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - H C Steel
- Department of Immunology, School of Medicine, Faculty of Faculty of Health Sciences, University of Pretoria, Pretoria, 001, South Africa
| | - B L Rapoport
- Department of Immunology, School of Medicine, Faculty of Faculty of Health Sciences, University of Pretoria, Pretoria, 001, South Africa
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| |
Collapse
|
9
|
Riner AN, Herremans KM, Vudatha V, Han S, Qu X, Liu J, Mukhopadhyay N, Freudenberger DC, George TJ, Judge SM, Judge AR, Hughes SJ, Trevino JG. Heterogeneity of weight loss and transcriptomic signatures in pancreatic ductal adenocarcinoma. J Cachexia Sarcopenia Muscle 2024; 15:149-158. [PMID: 38123146 PMCID: PMC10834348 DOI: 10.1002/jcsm.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is highly associated with cachexia and weight loss, which is driven by the tumour's effect on the body. Data are lacking on differences in these metrics based on PDAC anatomic location. We hypothesize that the primary tumour's anatomic region influences the prevalence and severity of unintentional weight loss. METHODS Treatment naïve patients with PDAC who underwent pancreatectomy at a single institution between 2012 and 2020 were identified retrospectively. Patients with pancreatic head or distal tumours were matched by sex, age, N and T stage. Serologic and anthropometric variables were obtained at the time of diagnosis. Skeletal muscle index (SMI), muscle radiation attenuation (MRA) and adiposity were measured. The primary outcome was presence of significant weight loss [>5% body weight (BW) loss in past 6 months]. Signed rank tests, Cochran Mantel Haenszel tests and Kaplan-Meier survival analysis are presented. RNA-seq of tumours was performed to explore enriched pathways related to cachexia and weight loss. RESULTS Pancreatic head tumours (n = 24) were associated with higher prevalence (70.8% vs. 41.7%, P = 0.081) and degree of weight loss (7.9% vs. 2.5%, P = 0.014) compared to distal tumours (n = 24). BMI (P = 0.642), SMI (P = 0.738) and MRA (P = 0.478) were similar between groups. Combining BW loss, SMI and MRA into a composite score, patients with pancreatic head cancers met more criteria associated with poor prognosis (P = 0.142). Serum albumin (3.9 vs. 4.4 g/dL, P = 0.002) was lower and bilirubin (4.5 vs. 0.4 mg/dL, P < 0.001) were higher with pancreatic head tumours. Survival differed by tumour location (P = 0.014) with numerically higher median overall survival with distal tumours (11.1 vs. 21.8 months; P = 0.066). Transcriptomic analysis revealed inactivation of appetite stimulation, weight regulation and nutrient digestion/metabolism pathways in pancreatic head tumours. CONCLUSIONS Resectable pancreatic head PDAC is associated with higher prevalence of significant weight loss and more poor prognosis features. Pancreaticobiliary obstruction and hypoalbuminemia in patients with head tumours suggests compounding effects of nutrient malabsorption and systemic inflammation on molecular drivers of cachexia, possibly contributing to shorter survival. Therefore, PDAC-associated cachexia is a heterogenous syndrome, which may be influenced by the primary tumour location. Select patients with resectable pancreatic head tumours may benefit from nutritional rehabilitation to improve outcomes.
Collapse
Affiliation(s)
- Andrea N. Riner
- Department of SurgeryUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Kelly M. Herremans
- Department of SurgeryUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Vignesh Vudatha
- Department of SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Song Han
- Department of SurgeryUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Xufeng Qu
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jinze Liu
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Nitai Mukhopadhyay
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Thomas J. George
- Department of MedicineUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of Florida Health Science CenterGainesvilleFloridaUSA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of Florida Health Science CenterGainesvilleFloridaUSA
| | - Steven J. Hughes
- Department of SurgeryUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Jose G. Trevino
- Department of SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
10
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
11
|
Bondi D, Bevere M, Piccirillo R, Sorci G, Di Felice V, Re Cecconi AD, D'Amico D, Pietrangelo T, Fulle S. Integrated procedures for accelerating, deepening, and leading genetic inquiry: A first application on human muscle secretome. Mol Genet Metab 2023; 140:107705. [PMID: 37837864 DOI: 10.1016/j.ymgme.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.
Collapse
Affiliation(s)
- Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.
| | - Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Andrea David Re Cecconi
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Daniela D'Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| |
Collapse
|
12
|
Taylor J, Uhl L, Moll I, Hasan SS, Wiedmann L, Morgenstern J, Giaimo BD, Friedrich T, Alsina-Sanchis E, De Angelis Rigotti F, Mülfarth R, Kaltenbach S, Schenk D, Nickel F, Fleming T, Sprinzak D, Mogler C, Korff T, Billeter AT, Müller-Stich BP, Berriel Diaz M, Borggrefe T, Herzig S, Rohm M, Rodriguez-Vita J, Fischer A. Endothelial Notch1 signaling in white adipose tissue promotes cancer cachexia. NATURE CANCER 2023; 4:1544-1560. [PMID: 37749321 PMCID: PMC10663158 DOI: 10.1038/s43018-023-00622-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/20/2023] [Indexed: 09/27/2023]
Abstract
Cachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors. Considering that the continuous endothelium in WAT is the first line of contact with circulating factors, we postulated whether the endothelium itself may orchestrate tissue remodeling. Here, we show using human and mouse cancer models that during precachexia, tumors overactivate Notch1 signaling in distant WAT endothelium. Sustained endothelial Notch1 signaling induces a WAT wasting phenotype in male mice through excessive retinoic acid production. Pharmacological blockade of retinoic acid signaling was sufficient to inhibit WAT wasting in a mouse cancer cachexia model. This demonstrates that cancer manipulates the endothelium at distant sites to mediate WAT wasting by altering angiocrine signals.
Collapse
Affiliation(s)
- Jacqueline Taylor
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leonie Uhl
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sana Safatul Hasan
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | - Tobias Friedrich
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Giessen, Germany
| | - Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Kaltenbach
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Darius Schenk
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Nickel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adrian T Billeter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Beat P Müller-Stich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Unit, Department of Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Unit, Department of Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Unit, Department of Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Perry AS, Zhao S, Gajjar P, Murthy VL, Lehallier B, Miller P, Nair S, Neill C, Carr JJ, Fearon W, Kapadia S, Kumbhani D, Gillam L, Lindenfeld J, Farrell L, Marron MM, Tian Q, Newman AB, Murabito J, Gerszten RE, Nayor M, Elmariah S, Lindman BR, Shah R. Proteomic architecture of frailty across the spectrum of cardiovascular disease. Aging Cell 2023; 22:e13978. [PMID: 37731195 PMCID: PMC10652351 DOI: 10.1111/acel.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
While frailty is a prominent risk factor in an aging population, the underlying biology of frailty is incompletely described. Here, we integrate 979 circulating proteins across a wide range of physiologies with 12 measures of frailty in a prospective discovery cohort of 809 individuals with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation. Our aim was to characterize the proteomic architecture of frailty in a highly susceptible population and study its relation to clinical outcome and systems-wide phenotypes to define potential novel, clinically relevant frailty biology. Proteomic signatures (specifically of physical function) were related to post-intervention outcome in AS, specifying pathways of innate immunity, cell growth/senescence, fibrosis/metabolism, and a host of proteins not widely described in human aging. In published cohorts, the "frailty proteome" displayed heterogeneous trajectories across age (20-100 years, age only explaining a small fraction of variance) and were associated with cardiac and non-cardiac phenotypes and outcomes across two broad validation cohorts (N > 35,000) over ≈2-3 decades. These findings suggest the importance of precision biomarkers of underlying multi-organ health status in age-related morbidity and frailty.
Collapse
Affiliation(s)
- Andrew S. Perry
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Priya Gajjar
- Cardiovascular Medicine Section, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | | | | | - Patricia Miller
- Department of Medicine, and Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Sangeeta Nair
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Colin Neill
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - J. Jeffrey Carr
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - William Fearon
- Department of Medicine, Division of CardiologyStanford Medical CenterPalo AltoCaliforniaUSA
| | - Samir Kapadia
- Department of Medicine, Division of CardiologyCleveland Clinic FoundationClevelandOhioUSA
| | - Dharam Kumbhani
- Department of Medicine, Division of CardiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Linda Gillam
- Department of Cardiovascular MedicineMorristown Medical CenterMorristownNew JerseyUSA
| | - JoAnn Lindenfeld
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Laurie Farrell
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Megan M. Marron
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qu Tian
- National Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Departments of Medicine and Clinical and Translational ScienceUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joanne Murabito
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Robert E. Gerszten
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Sammy Elmariah
- Department of Medicine, Division of CardiologyThe University of CaliforniaSan FranciscoCaliforniaUSA
| | - Brian R. Lindman
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ravi Shah
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
14
|
Wang F, Yi J, Chen Y, Bai X, Lu C, Feng S, Zhou X. PRSS2 regulates EMT and metastasis via MMP-9 in gastric cancer. Acta Histochem 2023; 125:152071. [PMID: 37331089 DOI: 10.1016/j.acthis.2023.152071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Serine protease 2 (PRSS2) is upregulated in gastric cancer tissues, correlates with poor prognosis and promotes migration and invasion of gastric cancer cells. However, the exact mechanism by which PRSS2 promotes metastasis in gastric cancer is unclear. We examined serum PRSS2 levels in healthy controls and gastric cancer patients by enzyme linked immunosorbent assay (ELISA) and analyzed the correlation between PRSS2 serum level with the clinicopathological characteristics of gastric cancer patients and matrix metalloproteinase-9 (MMP-9) expression. A lentiviral MMP-9 overexpression vector was constructed and used to transfect gastric cancer cells with stable silencing of PRSS2, and migration, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer cells were examined. High serum PRSS2 levels were detected in gastric cancer patients and associated with lymphatic metastasis and TNM stage. Serum PRSS2 was positively correlated with serum MMP-9 level. PRSS2 silencing inhibited EMT, and knock-down of PRSS2 partially abrogated cell metastasis and EMT caused by overexpression of MMP-9. These results suggest that PRSS2 promotes the migration and invasion of gastric cancer cells through EMT induction by MMP-9. Our findings suggest that PRSS2 may be a potential early diagnostic marker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiang Bai
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunfeng Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shichun Feng
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
15
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
16
|
Gilmore LA, Parry TL, Thomas GA, Khamoui AV. Skeletal muscle omics signatures in cancer cachexia: perspectives and opportunities. J Natl Cancer Inst Monogr 2023; 2023:30-42. [PMID: 37139970 PMCID: PMC10157770 DOI: 10.1093/jncimonographs/lgad006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 05/05/2023] Open
Abstract
Cachexia is a life-threatening complication of cancer that occurs in up to 80% of patients with advanced cancer. Cachexia reflects the systemic consequences of cancer and prominently features unintended weight loss and skeletal muscle wasting. Cachexia impairs cancer treatment tolerance, lowers quality of life, and contributes to cancer-related mortality. Effective treatments for cancer cachexia are lacking despite decades of research. High-throughput omics technologies are increasingly implemented in many fields including cancer cachexia to stimulate discovery of disease biology and inform therapy choice. In this paper, we present selected applications of omics technologies as tools to study skeletal muscle alterations in cancer cachexia. We discuss how comprehensive, omics-derived molecular profiles were used to discern muscle loss in cancer cachexia compared with other muscle-wasting conditions, to distinguish cancer cachexia from treatment-related muscle alterations, and to reveal severity-specific mechanisms during the progression of cancer cachexia from early toward severe disease.
Collapse
Affiliation(s)
- L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Gwendolyn A Thomas
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
17
|
Shimonty A, Bonewald LF, Pin F. Role of the Osteocyte in Musculoskeletal Disease. Curr Osteoporos Rep 2023; 21:303-310. [PMID: 37084017 DOI: 10.1007/s11914-023-00788-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to summarize the role of the osteocyte in muscle atrophy in cancer patients, sarcopenia, spinal cord injury, Duchenne's muscular dystrophy, and other conditions associated with muscle deterioration. RECENT FINDINGS One type of bone cell, the osteocyte, appears to play a major role in muscle and bone crosstalk, whether physiological or pathological. Osteocytes are cells living within the bone-mineralized matrix. These cells are connected to each other by means of dendrites to create an intricately connected network. The osteocyte network has been shown to respond to different types of stimuli such as mechanical unloading, immobilization, aging, and cancer by producing osteocytes-derived factors. It is now becoming clear that some of these factors including sclerostin, RANKL, TGF-β, and TNF-α have detrimental effects on skeletal muscle. Bone and muscle not only communicate mechanically but also biochemically. Osteocyte-derived factors appear to contribute to the pathogenesis of muscle disease and could be used as a cellular target for new therapeutic approaches.
Collapse
Affiliation(s)
- Anika Shimonty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Su CY, Zhou S, Gonzalez-Kozlova E, Butler-Laporte G, Brunet-Ratnasingham E, Nakanishi T, Jeon W, Morrison DR, Laurent L, Afilalo J, Afilalo M, Henry D, Chen Y, Carrasco-Zanini J, Farjoun Y, Pietzner M, Kimchi N, Afrasiabi Z, Rezk N, Bouab M, Petitjean L, Guzman C, Xue X, Tselios C, Vulesevic B, Adeleye O, Abdullah T, Almamlouk N, Moussa Y, DeLuca C, Duggan N, Schurr E, Brassard N, Durand M, Del Valle DM, Thompson R, Cedillo MA, Schadt E, Nie K, Simons NW, Mouskas K, Zaki N, Patel M, Xie H, Harris J, Marvin R, Cheng E, Tuballes K, Argueta K, Scott I, Greenwood CMT, Paterson C, Hinterberg MA, Langenberg C, Forgetta V, Pineau J, Mooser V, Marron T, Beckmann ND, Kim-Schulze S, Charney AW, Gnjatic S, Kaufmann DE, Merad M, Richards JB. Circulating proteins to predict COVID-19 severity. Sci Rep 2023; 13:6236. [PMID: 37069249 PMCID: PMC10107586 DOI: 10.1038/s41598-023-31850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.
Collapse
Affiliation(s)
- Chen-Yang Su
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Computer Science, McGill University, Montréal, QC, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, Quebec, Canada
| | - Sirui Zhou
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | - Guillaume Butler-Laporte
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | - Tomoko Nakanishi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Graduate School of Medicine, McGill International Collaborative School in Genomic Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Wonseok Jeon
- Department of Computer Science, McGill University, Montréal, QC, Canada
| | - David R Morrison
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Laetitia Laurent
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Jonathan Afilalo
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Marc Afilalo
- Department of Emergency Medicine, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Danielle Henry
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Yiheng Chen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Julia Carrasco-Zanini
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yossi Farjoun
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Maik Pietzner
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nofar Kimchi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Zaman Afrasiabi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Nardin Rezk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Meriem Bouab
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Louis Petitjean
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Charlotte Guzman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Xiaoqing Xue
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Chris Tselios
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Branka Vulesevic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Olumide Adeleye
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Tala Abdullah
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Noor Almamlouk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Yara Moussa
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Chantal DeLuca
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Naomi Duggan
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nathalie Brassard
- Research Centre of the Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Research Centre of the Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada
| | - Diane Marie Del Valle
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Thompson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario A Cedillo
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Schadt
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole W Simons
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantinos Mouskas
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Zaki
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jocelyn Harris
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Marvin
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Cheng
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimberly Argueta
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ieisha Scott
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | | | - Claudia Langenberg
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Joelle Pineau
- Department of Computer Science, McGill University, Montréal, QC, Canada
| | - Vincent Mooser
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas Marron
- Immunotherapy and Phase 1 Trials, Mount Sinai Hospital, New York, NY, USA
| | - Noam D Beckmann
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander W Charney
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada.
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Twin Research, King's College London, London, UK.
| |
Collapse
|
19
|
PRSS2 remodels the tumor microenvironment via repression of Tsp1 to stimulate tumor growth and progression. Nat Commun 2022; 13:7959. [PMID: 36575174 PMCID: PMC9794699 DOI: 10.1038/s41467-022-35649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
The progression of cancer from localized to metastatic disease is the primary cause of morbidity and mortality. The interplay between the tumor and its microenvironment is the key driver in this process of tumor progression. In order for tumors to progress and metastasize they must reprogram the cells that make up the microenvironment to promote tumor growth and suppress endogenous defense systems, such as the immune and inflammatory response. We have previously demonstrated that stimulation of Tsp-1 in the tumor microenvironment (TME) potently inhibits tumor growth and progression. Here, we identify a novel tumor-mediated mechanism that represses the expression of Tsp-1 in the TME via secretion of the serine protease PRSS2. We demonstrate that PRSS2 represses Tsp-1, not via its enzymatic activity, but by binding to low-density lipoprotein receptor-related protein 1 (LRP1). These findings describe a hitherto undescribed activity for PRSS2 through binding to LRP1 and represent a potential therapeutic strategy to treat cancer by blocking the PRSS2-mediated repression of Tsp-1. Based on the ability of PRSS2 to reprogram the tumor microenvironment, this discovery could lead to the development of therapeutic agents that are indication agnostic.
Collapse
|
20
|
Complement and Fungal Dysbiosis as Prognostic Markers and Potential Targets in PDAC Treatment. Curr Oncol 2022; 29:9833-9854. [PMID: 36547187 PMCID: PMC9777542 DOI: 10.3390/curroncol29120773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still hampered by a dismal prognosis. A better understanding of the tumor microenvironment within the pancreas and of the factors affecting its composition is of utmost importance for developing new diagnostic and treatment tools. In this context, the complement system plays a prominent role. Not only has it been shown to shape a T cell-mediated immune response, but it also directly affects proliferation and apoptosis of the tumor cells, influencing angiogenesis, metastatic spread and therapeutic resistance. This makes complement proteins appealing not only as early biomarkers of PDAC development, but also as therapeutic targets. Fungal dysbiosis is currently the new kid on the block in tumorigenesis with cancer-associated mycobiomes extracted from several cancer types. For PDAC, colonization with the yeast Malassezia seems to promote cancer progression, already in precursor lesions. One responsible mechanism appears to be complement activation via the lectin pathway. In the present article, we review the role of the complement system in tumorigenesis, presenting observations that propose it as the missing link between fungal dysbiosis and PDAC development. We also present the results of a small pilot study supporting the crucial interplay between the complement system and Malassezia colonization in PDAC pathogenesis.
Collapse
|
21
|
Uddin MH, Mohammad RM, Philip PA, Azmi AS, Muqbil I. Role of noncoding RNAs in pancreatic ductal adenocarcinoma associated cachexia. Am J Physiol Cell Physiol 2022; 323:C1624-C1632. [PMID: 36280389 PMCID: PMC9722253 DOI: 10.1152/ajpcell.00424.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
Abstract
Cachexia is an acute syndrome that is very commonly observed in patients with cancer. Cachexia is the number one cause of death in patients with metastatic disease and is also the major factor for physical toxicity and financial burden. More importantly, the majority of patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) cancer undergo cachexia. Pancreatic cancer causes deaths of ∼50,000 Americans and about 400,000 people worldwide every year. The high mortality rates in metastatic PDAC are due to systemic pathologies and cachexia, which quickens death in these patients. About 90% of all patients with PDAC undergo wasting of muscle causing mobility loss and leading to a number of additional pathological conditions. PDAC-associated cancer cachexia emanates from complex signaling cues involving both mechanical and biological signals. Tumor invasion is associated with the loss of pancreatic function-induced digestive disorders and malabsorption, which causes subsequent weight loss and eventually promotes cachexia. Besides, systemic inflammation of patients with PDAC could release chemical cues (e.g., cytokine-mediated Atrogin-1/MAFbx expression) that participate in muscle wasting. Our understanding of genes, proteins, and cytokines involved in promoting cancer cachexia has evolved considerably. However, the role of epigenetic factors, particularly the role of noncoding RNAs (ncRNAs) in regulating PDAC-associated cachexia is less studied. In this review article, the most updated knowledge on the various ncRNAs including microRNAs (miRs), long noncoding RNA (lncRNAs), piwi interacting RNAs (PiwiRNAs), small nucleolar RNA (snoRNAs), and circular RNAs (circRNA) and their roles in cancer cachexia are described.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
- Henry Ford Health System, Detroit, Michigan
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Tech University, Southfield, Michigan
| |
Collapse
|
22
|
Coapplication of Magnesium Supplementation and Vibration Modulate Macrophage Polarization to Attenuate Sarcopenic Muscle Atrophy through PI3K/Akt/mTOR Signaling Pathway. Int J Mol Sci 2022; 23:ijms232112944. [PMID: 36361730 PMCID: PMC9654727 DOI: 10.3390/ijms232112944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related geriatric syndrome characterized by the gradual loss of muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to be beneficial to structural and functional outcomes of skeletal muscles, while magnesium (Mg) is a cofactor associated with better indices of skeletal muscle mass and strength. We hypothesized that LMHFV, Mg and their combinations could suppress inflammation and sarcopenic atrophy, promote myogenesis via PI3k/Akt/mTOR pathway in senescence-accelerated mouse P8 (SAMP8) mice and C2C12 myoblasts. Results showed that Mg treatment and LMHFV could significantly decrease inflammatory expression (C/EBPα and LYVE1) and modulate a CD206-positive M2 macrophage population at month four. Mg treatment also showed significant inhibitory effects on FOXO3, MuRF1 and MAFbx mRNA expression. Coapplication showed a synergistic effect on suppression of type I fiber atrophy, with significantly higher IGF-1, MyoD, MyoG mRNA (p < 0.05) and pAkt protein expression (p < 0.0001) during sarcopenia. In vitro inhibition of PI3K/Akt and mTOR abolished the enhancement effects on myotube formation and inhibited MRF mRNA and p85, Akt, pAkt and mTOR protein expressions. The present study demonstrated that the PI3K/Akt/mTOR pathway is the predominant regulatory mechanism through which LMHFV and Mg enhanced muscle regeneration and suppressed atrogene upregulation.
Collapse
|
23
|
Stalmach A, Boehm I, Fernandes M, Rutter A, Skipworth RJE, Husi H. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions. Molecules 2022; 27:5514. [PMID: 36080280 PMCID: PMC9457532 DOI: 10.3390/molecules27175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.
Collapse
Affiliation(s)
- Angelique Stalmach
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Ines Boehm
- Edinburgh Cancer Research UK Tissue Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Alison Rutter
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Holger Husi
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
24
|
Xu C, Song L, Peng H, Yang Y, Liu Y, Pei D, Guo J, Liu N, Liu J, Li X, Li C, Kang Z. Clinical Eosinophil-Associated Genes can Serve as a Reliable Predictor of Bladder Urothelial Cancer. Front Mol Biosci 2022; 9:963455. [PMID: 35936781 PMCID: PMC9353774 DOI: 10.3389/fmolb.2022.963455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 01/04/2023] Open
Abstract
Background: Numerous studies have shown that infiltrating eosinophils play a key role in the tumor progression of bladder urothelial carcinoma (BLCA). However, the roles of eosinophils and associated hub genes in clinical outcomes and immunotherapy are not well known. Methods: BLCA patient data were extracted from the TCGA database. The tumor immune microenvironment (TIME) was revealed by the CIBERSORT algorithm. Candidate modules and hub genes associated with eosinophils were identified by weighted gene co-expression network analysis (WGCNA). The external GEO database was applied to validate the above results. TIME-related genes with prognostic significance were screened by univariate Cox regression analysis, lasso regression, and multivariate Cox regression analysis. The patient's risk score (RS) was calculated and divided subjects into high-risk group (HRG) and low-risk group (LRG). The nomogram was developed based on the risk signature. Models were validated via receiver operating characteristic (ROC) curves and calibration curves. Differences between HRG and LRG in clinical features and tumor mutational burden (TMB) were compared. The Immune Phenomenon Score (IPS) was calculated to estimate the immunotherapeutic significance of RS. Half-maximal inhibitory concentrations (IC50s) of chemotherapeutic drugs were predicted by the pRRophetic algorithm. Results: 313 eosinophil-related genes were identified by WGCNA. Subsequently, a risk signature containing 9 eosinophil-related genes (AGXT, B3GALT2, CCDC62, CLEC1B, CLEC2D, CYP19A1, DNM3, SLC5A9, SLC26A8) was finally developed via multiplex analysis and screening. Age (p < 0.001), grade (p < 0.001), and RS (p < 0.001) were independent predictors of survival in BLCA patients. Based on the calibration curve, our risk signature nomogram was confirmed as a good predictor of BLCA patients' prognosis at 1, 3, and 5 years. The association analysis of RS and immunotherapy indicated that low-risk patients were more credible for novel immune checkpoint inhibitors (ICI) immunotherapy. The chemotherapeutic drug model suggests that RS has an effect on the drug sensitivity of patients. Conclusions: In conclusion, the eosinophil-based RS can be used as a reliable clinical predictor and provide insights into the precise treatment of BLCA.
Collapse
Affiliation(s)
- Chaojie Xu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lishan Song
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Peng
- Department of Orthopaedics, Affiliated National Hospital of Guangxi Medical University, Nanning, China
| | - Yubin Yang
- College of Pharmacy, Shantou University School of Medicine, Shantou, China
| | - Yi Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongchen Pei
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jianhua Guo
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nan Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jiabang Liu
- College of Pharmacy, Shantou University School of Medicine, Shantou, China
| | - Xiaoyong Li
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Zhengjun Kang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Physical exercise has gradually become a focus in cancer treatment due to its pronounced role in reducing cancer risk, enhancing therapeutic efficacy, and improving prognosis. In recent decades, skeletal muscles have been considered endocrine organs, exerting their biological functions via the endocrine, autocrine, and paracrine systems by secreting various types of myokines. The amount of myokines secreted varies depending on the intensity, type, and duration of exercise. Recent studies have shown that muscle-derived myokines are highly involved the effects of exercise on cancer. Multiple myokines, such as interleukin-6 (IL-6), oncostatin M (OSM), secreted protein acidic and rich in cysteine (SPARC), and irisin, directly mediate cancer progression by influencing the proliferation, apoptosis, stemness, drug resistance, metabolic reprogramming, and epithelial-mesenchymal transformation (EMT) of cancer cells. In addition, IL-6, interleukin-8 (IL-8), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), and irisin can improve obesity-induced inflammation by stimulating lipolysis of adipose tissues, promoting glucose uptake, and accelerating the browning of white fat. Furthermore, some myokines could regulate the tumor microenvironment, such as angiogenesis and the immune microenvironment. Cancer cachexia occurs in up to 80% of cancer patients and is responsible for 22%-30% of patient deaths. It is characterized by systemic inflammation and decreased muscle mass. Exercise-induced myokine production is important in regulating cancer cachexia. This review summarizes the roles and underlying mechanisms of myokines, such as IL-6, myostatin, IL-15, irisin, fibroblast growth factor 21 (FGF21) and musclin, in cancer cachexia. Through comprehensive analysis, we conclude that myokines are potential targets for inhibiting cancer progression and the associated cachexia.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
26
|
Hegde M, Daimary UD, Girisa S, Kumar A, Kunnumakkara AB. Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Exp Biol Med (Maywood) 2022; 247:713-733. [PMID: 35521962 DOI: 10.1177/15353702221087962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated cachexia (CC) is a pathological condition characterized by sarcopenia, adipose tissue depletion, and progressive weight loss. CC is driven by multiple factors such as anorexia, excessive catabolism, elevated energy expenditure by growing tumor mass, and inflammatory mediators released by cancer cells and surrounding tissues. In addition, endocrine system, systemic metabolism, and central nervous system (CNS) perturbations in combination with cachexia mediators elicit exponential elevation in catabolism and reduced anabolism in skeletal muscle, adipose tissue, and cardiac muscle. At the molecular level, mechanisms of CC include inflammation, reduced protein synthesis, and lipogenesis, elevated proteolysis and lipolysis along with aggravated toxicity and complications of chemotherapy. Furthermore, CC is remarkably associated with intolerance to anti-neoplastic therapy, poor prognosis, and increased mortality with no established standard therapy. In this context, we discuss the spatio-temporal changes occurring in the various stages of CC and highlight the imbalance of host metabolism. We provide how multiple factors such as proteasomal pathways, inflammatory mediators, lipid and protein catabolism, glucocorticoids, and in-depth mechanisms of interplay between inflammatory molecules and CNS can trigger and amplify the cachectic processes. Finally, we highlight current diagnostic approaches and promising therapeutic interventions for CC.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
27
|
Xu PC, You M, Yu SY, Luan Y, Eldani M, Caffrey TC, Grandgenett PM, O'Connell KA, Shukla SK, Kattamuri C, Hollingsworth MA, Singh PK, Thompson TB, Chung S, Kim SY. Visceral adipose tissue remodeling in pancreatic ductal adenocarcinoma cachexia: the role of activin A signaling. Sci Rep 2022; 12:1659. [PMID: 35102236 PMCID: PMC8803848 DOI: 10.1038/s41598-022-05660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients display distinct phenotypes of cachexia development, with either adipose tissue loss preceding skeletal muscle wasting or loss of only adipose tissue. Activin A levels were measured in serum and analyzed in tumor specimens of both a cohort of Stage IV PDAC patients and the genetically engineered KPC mouse model. Our data revealed that serum activin A levels were significantly elevated in Stage IV PDAC patients in comparison to age-matched non-cancer patients. Little is known about the role of activin A in adipose tissue wasting in the setting of PDAC cancer cachexia. We established a correlation between elevated activin A and remodeling of visceral adipose tissue. Atrophy and fibrosis of visceral adipose tissue was examined in omental adipose tissue of Stage IV PDAC patients and gonadal adipose tissue of an orthotopic mouse model of PDAC. Remarkably, white visceral adipose tissue from both PDAC patients and mice exhibited decreased adipocyte diameter and increased fibrotic deposition. Strikingly, expression of thermogenic marker UCP1 in visceral adipose tissues of PDAC patients and mice remained unchanged. Thus, we propose that activin A signaling could be relevant to the acceleration of visceral adipose tissue wasting in PDAC-associated cachexia.
Collapse
Affiliation(s)
- Pauline C Xu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mikyoung You
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA
| | - Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maya Eldani
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kelly A O'Connell
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA.
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
28
|
Cortez NE, Mackenzie GG. Ketogenic Diets in Pancreatic Cancer and Associated Cachexia: Cellular Mechanisms and Clinical Perspectives. Nutrients 2021; 13:nu13093202. [PMID: 34579079 PMCID: PMC8471358 DOI: 10.3390/nu13093202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and extremely therapy-resistant cancer. It is estimated that up to 80% of PDAC patients present with cachexia, a multifactorial disorder characterized by the involuntary and ongoing wasting of skeletal muscle that affects therapeutic response and survival. During the last decade, there has been an increased interest in exploring dietary interventions to complement the treatment of PDAC and associated cachexia. Ketogenic diets (KDs) have gained attention for their anti-tumor potential. Characterized by a very low carbohydrate, moderate protein, and high fat composition, this diet mimics the metabolic changes that occur in fasting. Numerous studies report that a KD reduces tumor growth and can act as an adjuvant therapy in various cancers, including pancreatic cancer. However, research on the effect and mechanisms of action of KDs on PDAC-associated cachexia is limited. In this narrative review, we summarize the evidence of the impact of KDs in PDAC treatment and cachexia mitigation. Furthermore, we discuss key cellular mechanisms that explain KDs’ potential anti-tumor and anti-cachexia effects, focusing primarily on reprogramming of cell metabolism, epigenome, and the gut microbiome. Finally, we provide a perspective on future research needed to advance KDs into clinical use.
Collapse
|
29
|
Rupert JE, Narasimhan A, Jengelley DH, Jiang Y, Liu J, Au E, Silverman LM, Sandusky G, Bonetto A, Cao S, Lu X, O’Connell TM, Liu Y, Koniaris LG, Zimmers TA. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med 2021; 218:e20190450. [PMID: 33851955 PMCID: PMC8185651 DOI: 10.1084/jem.20190450] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Most patients with pancreatic adenocarcinoma (PDAC) suffer cachexia; some do not. To model heterogeneity, we used patient-derived orthotopic xenografts. These phenocopied donor weight loss. Furthermore, muscle wasting correlated with mortality and murine IL-6, and human IL-6 associated with the greatest murine cachexia. In cell culture and mice, PDAC cells elicited adipocyte IL-6 expression and IL-6 plus IL-6 receptor (IL6R) in myocytes and blood. PDAC induced adipocyte lipolysis and muscle steatosis, dysmetabolism, and wasting. Depletion of IL-6 from malignant cells halved adipose wasting and abolished myosteatosis, dysmetabolism, and atrophy. In culture, adipocyte lipolysis required soluble (s)IL6R, while IL-6, sIL6R, or palmitate induced myotube atrophy. PDAC cells activated adipocytes to induce myotube wasting and activated myotubes to induce adipocyte lipolysis. Thus, PDAC cachexia results from tissue crosstalk via a feed-forward, IL-6 trans-signaling loop. Malignant cells signal via IL-6 to muscle and fat, muscle to fat via sIL6R, and fat to muscle via lipids and IL-6, all targetable mechanisms for treatment of cachexia.
Collapse
Affiliation(s)
- Joseph E. Rupert
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | | | - Yanlin Jiang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Ernie Au
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
| | - Libbie M. Silverman
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - George Sandusky
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Sha Cao
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Xiaoyu Lu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas M. O’Connell
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Yunlong Liu
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Teresa A. Zimmers
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
30
|
Cao Z, Zhao K, Jose I, Hoogenraad NJ, Osellame LD. Biomarkers for Cancer Cachexia: A Mini Review. Int J Mol Sci 2021; 22:4501. [PMID: 33925872 PMCID: PMC8123431 DOI: 10.3390/ijms22094501] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer cachexia is a common condition in many cancer patients, particularly those with advanced disease. Cancer cachexia patients are generally less tolerant to chemotherapies and radiotherapies, largely limiting their treatment options. While the search for treatments of this condition are ongoing, standards for the efficacy of treatments have yet to be developed. Current diagnostic criteria for cancer cachexia are primarily based on loss of body mass and muscle function. However, these criteria are rather limiting, and in time, when weight loss is noticeable, it may be too late for treatment. Consequently, biomarkers for cancer cachexia would be valuable adjuncts to current diagnostic criteria, and for assessing potential treatments. Using high throughput methods such as "omics approaches", a plethora of potential biomarkers have been identified. This article reviews and summarizes current studies of biomarkers for cancer cachexia.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Kening Zhao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Irvin Jose
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Nick J. Hoogenraad
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Laura D. Osellame
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| |
Collapse
|