1
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
2
|
Cox MA. Adrenergic signaling dampens T cell activity during chronic infection and cancer. Trends Neurosci 2024; 47:165-166. [PMID: 38129194 DOI: 10.1016/j.tins.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Stress contributes to infection and cancer susceptibility, but the mediating mechanisms are still being elucidated. CD8 T cells are critical players in antiviral and antitumor immune responses. A recent study by Globig et al., together with a growing body of literature, link norepinephrine produced during the stress response to CD8 T cell dysfunction.
Collapse
Affiliation(s)
- Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Miranda S, Vermeesen R, Radstake WE, Parisi A, Ivanova A, Baatout S, Tabury K, Baselet B. Lost in Space? Unmasking the T Cell Reaction to Simulated Space Stressors. Int J Mol Sci 2023; 24:16943. [PMID: 38069265 PMCID: PMC10707245 DOI: 10.3390/ijms242316943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The space environment will expose astronauts to stressors like ionizing radiation, altered gravity fields and elevated cortisol levels, which pose a health risk. Understanding how the interplay between these stressors changes T cells' response is important to better characterize space-related immune dysfunction. We have exposed stimulated Jurkat cells to simulated space stressors (1 Gy, carbon ions/1 Gy photons, 1 µM hydrocortisone (HC), Mars, moon, and microgravity) in a single or combined manner. Pro-inflammatory cytokine IL-2 was measured in the supernatant of Jurkat cells and at the mRNA level. Results show that alone, HC, Mars gravity and microgravity significantly decrease IL-2 presence in the supernatant. 1 Gy carbon ion irradiation showed a smaller impact on IL-2 levels than photon irradiation. Combining exposure to different simulated space stressors seems to have less immunosuppressive effects. Gene expression was less impacted at the time-point collected. These findings showcase a complex T cell response to different conditions and suggest the importance of elevated cortisol levels in the context of space flight, also highlighting the need to use simulated partial gravity technologies to better understand the immune system's response to the space environment.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| | - Wilhelmina E. Radstake
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alessio Parisi
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Anna Ivanova
- Data Science Institute (DSI), I-BioStat University of Hasselt, 3590 Hasselt, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| |
Collapse
|
4
|
Shi CS, Kuan FC, Chin CC, Li JM. Modulation of mitochondrial apoptosis by β2-adrenergic receptor blockage in colorectal cancer after radiotherapy: an in-vivo and in-vitro study. Am J Cancer Res 2023; 13:3741-3752. [PMID: 37693145 PMCID: PMC10492122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of malignancy-related deaths worldwide. Radiotherapy is often combined with surgery to treat patients with more advanced CRC. Despite impressive initial clinical responses, radiotherapy resistance is the main reason for most treatment failures in colorectal cancer. The G protein-coupled adrenergic receptor (AR) has shown to involve in the development and radiotherapy resistance of CRC. The β2-AR blockage (ICI-118,551) can use to inhibit the progression of CRC through downregulating EGFR-Akt-ERK1/2 signaling. Since catecholamines-activated the G protein-coupled AR activation has been shown to result in radioresistant, co-treatment with both β2-AR blockage and radiation may be improved the clinical outcome of CRC. We demonstrated that selective β2-AR blockage, but not selective β1-AR blockage, significantly enhanced radiation-induced apoptosis in CRC cells with wild-type p53 in vitro. The molecular mechanism of the apoptotic pathway was possibly triggered by a change in the mitochondrial membrane permeability and release of cytosolic cytochrome C through phospho-P53 mitochondrial translocation. We also found that a P53 knockout in the HCT116 cells was correlated with reversing β2-AR blockage-mediated apoptosis induction after radiation treatment. Furthermore, the β2-AR blockage significantly inhibited CRC cell-xenograft growth in vivo. Our study suggests that β2-AR blockage may be used as adjunct agent for improving the clinical outcomes of CRC following radiotherapy by inducing apoptosis in CRC cells.
Collapse
Affiliation(s)
- Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial HospitalChiayi, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang Gung Memorial HospitalChiayi, Taiwan
- Department of Medicine, Chang Gung Memorial HospitalChiayi, Taiwan
| | - Chih-Chien Chin
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial HospitalChiayi, Taiwan
| | - Jhy-Ming Li
- Department of Animal Science, National Chiayi UniversityChiayi, Taiwan
| |
Collapse
|
5
|
Ammons DT, MacDonald CR, Chow L, Repasky EA, Dow S. Chronic adrenergic stress and generation of myeloid-derived suppressor cells: Implications for cancer immunotherapy in dogs. Vet Comp Oncol 2023; 21:159-165. [PMID: 36876492 DOI: 10.1111/vco.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Recent studies have highlighted a key role played by the sympathetic nervous system (SNS) and adrenergic stress in mediating immune suppression associated with chronic inflammation in cancer and other diseases. The connection between chronic SNS activation, adrenergic stress and immune suppression is linked in part to the ability of catecholamines to stimulate the bone marrow release and differentiation of myeloid-derived suppressor cells (MDSC). Rodent model studies have revealed an important role for β-adrenergic receptor signalling in suppression of cancer immunity in mice subjected to chronic stresses, including thermal stress. Importantly, therapeutic blockade of beta-adrenergic responses by drugs such as propranolol can partially reverse the generation and differentiation of MDSC, and partly restore tumour immunity. Clinical trials in both humans and dogs with cancer have demonstrated that propranolol blockade can improve responses to radiation therapy, cancer vaccines and immune checkpoint inhibitors. Thus, the SNS stress response has become an important new target to relieve immune suppression in cancer and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Steven Dow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Chen J, Long MD, Sribenja S, Ma SJ, Yan L, Hu Q, Liu S, Khoury T, Hong CC, Bandera E, Singh AK, Repasky EA, Bouchard EG, Higgins M, Ambrosone CB, Yao S. An epigenome-wide analysis of socioeconomic position and tumor DNA methylation in breast cancer patients. Clin Epigenetics 2023; 15:68. [PMID: 37101222 PMCID: PMC10131486 DOI: 10.1186/s13148-023-01470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Disadvantaged socioeconomic position (SEP), including lower educational attainment and household income, may influence cancer risk and outcomes. We hypothesized that DNA methylation could function as an intermediary epigenetic mechanism that internalizes and reflects the biological impact of SEP. METHODS Based on tumor DNA methylation data from the Illumina 450 K array from 694 breast cancer patients in the Women's Circle of Health Study, we conducted an epigenome-wide analysis in relation to educational attainment and household income. Functional impact of the identified CpG sites was explored in silico using data from publicly available databases. RESULTS We identified 25 CpG sites associated with household income at an array-wide significance level, but none with educational attainment. Two of the top CpG sites, cg00452016 and cg01667837, were in promoter regions of NNT and GPR37, respectively, with multiple epigenetic regulatory features identified in each region. NNT is involved in β-adrenergic stress signaling and inflammatory responses, whereas GPR37 is involved in neurological and immune responses. For both loci, gene expression was inversely correlated to the levels of DNA methylation. The associations were consistent between Black and White women and did not differ by tumor estrogen receptor (ER) status. CONCLUSIONS In a large breast cancer patient population, we discovered evidence of the significant biological impact of household income on the tumor DNA methylome, including genes in the β-adrenergic stress and immune response pathways. Our findings support biological effects of socioeconomic status on tumor tissues, which might be relevant to cancer development and progression.
Collapse
Affiliation(s)
- Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sirinapa Sribenja
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sung Jun Ma
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Elisa Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ, USA
| | - Anurag K Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elizabeth G Bouchard
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Michael Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
7
|
Kalinski P, Kokolus KM, Azrak R, Berezin MY, Brentjens R, Czerniecki B, Dubrov S, Eaton K, Hyland A, Kisailus A, Kortylewski M, Koski GK, Kotula L, Gandhi S, Griffiths EA, Ługowska I, Matosevic S, McAleer C, Mikuła M, Nishimura MI, Noyes K, Orabina T, Ozretić P, Paragh G, Parascandola M, Pašukonienė V, Perl A, Powell DJ, Priebe W, Repasky EA, Rudnicki M, Singh AK, Sarnowska E, Sužiedėlis K, Titkova A, Utz K, Wei WZ, Rutkowski P. MEETING HIGHLIGHTS: THE THIRD MARIE SKŁODOWSKA-CURIE SYMPOSIUM ON CANCER RESEARCH AND CARE AT ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, SEPTEMBER 20-22, 2023. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2543-2555. [PMID: 38290016 DOI: 10.36740/wlek202312101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Marie Skłodowska-Curie Symposia on Cancer Research and Care (MSCS-CRC) promote collaborations between cancer researchers and care providers in the United States, Canada and Central and Eastern European Countries (CEEC), to accelerate the development of new cancer therapies, advance early detection and prevention, increase cancer awareness, and improve cancer care and the quality of life of patients and their families. The third edition of MSCS-CRC, held at Roswell Park Comprehensive Cancer Center, Buffalo, NY, in September 2023, brought together 137 participants from 20 academic institutions in the US, Poland, Ukraine, Lithuania, Croatia and Hungary, together with 16 biotech and pharma entities. The key areas of collaborative opportunity identified during the meeting are a) creating of a database of available collaborative projects in the areas of early-phase clinical trials, preclinical development, and identification of early biomarkers; b) promoting awareness of cancer risks and efforts at cancer prevention; c) laboratory and clinical training; and d) sharing experience in cost-effective delivery of cancer care and improving the quality of life of cancer patients and their families. Examples of ongoing international collaborations in the above areas were discussed. Participation of the representatives of the Warsaw-based Medical Research Agency, National Cancer Institute (NCI) of the United States, National Cancer Research Institutes of Poland and Lithuania, New York State Empire State Development, Ministry of Health of Ukraine and Translational Research Cancer Center Consortium of 13 cancer centers from the US and Canada, facilitated the discussion of available governmental and non-governmental funding initiatives in the above areas.
Collapse
Affiliation(s)
- Pawel Kalinski
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | | | - Rami Azrak
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | | | | | | | | | - Kara Eaton
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | - Andrew Hyland
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | - Adam Kisailus
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | | | | | | | - Shipra Gandhi
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | | | - Iwona Ługowska
- MARIA SKŁODOWSKA-CURIE NATIONAL RESEARCH INSTITUTE OF ONCOLOGY, WARSAW, POLAND
| | | | | | - Michał Mikuła
- MARIA SKŁODOWSKA-CURIE NATIONAL RESEARCH INSTITUTE OF ONCOLOGY, WARSAW, POLAND
| | | | | | | | - Petar Ozretić
- RUĐER BOŠKOVIĆ INSTITUTE, ZAGREB, CROATIA; CROATIAN ASSOCIATION FOR CANCER RESEARCH
| | - Gyorgy Paragh
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | | | - Vita Pašukonienė
- NATIONAL CANCER INSTITUTE, VILNIUS, LITHUANIA; VILNIUS GEDIMINAS TECHNICAL UNIVERSITY, VILNIUS, LITHUANIA
| | - Andras Perl
- SUNY UPSTATE MEDICAL UNIVERSITY, SYRACUSE, NY, USA
| | | | | | | | | | - Anurag K Singh
- ROSWELL PARK COMPREHENSIVE CANCER CENTER, BUFFALO, NY, USA
| | - Elżbieta Sarnowska
- MARIA SKŁODOWSKA-CURIE NATIONAL RESEARCH INSTITUTE OF ONCOLOGY, WARSAW, POLAND
| | - Kęstutis Sužiedėlis
- NATIONAL CANCER INSTITUTE, VILNIUS, LITHUANIA; VILNIUS UNIVERSITY, VILNIUS, LITHUANIA
| | - Anna Titkova
- KHARKIV NATIONAL MEDICAL UNIVERSITY, KHARKIV, UKRAINE; PRATIA UKRAINE, KHARKIV, UKRAINE
| | - Karen Utz
- EMPIRE STATE DEVELOPMENT, BUFFALO, NY, USA
| | - Wei-Zen Wei
- KARMANOS CANCER INSTITUTE, DETROIT, MI, USA; WAYNE STATE UNIVERSITY, DETROIT, MI, USA
| | - Piotr Rutkowski
- MARIA SKŁODOWSKA-CURIE NATIONAL RESEARCH INSTITUTE OF ONCOLOGY, WARSAW, POLAND; MEDICAL RESEARCH AGENCY, POLAND
| |
Collapse
|
8
|
Combining radiation with immune checkpoint inhibitors therapy for HCC: From the alteration of the immune microenvironment by radiotherapy. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Zheng M, Wan H, Zhu Y, Xiang L. The Correlation Between Radiotherapy and Patients' Fear of Cancer Recurrence: A Systematic Review and Meta-analysis. J Hosp Palliat Nurs 2022; 24:186-198. [PMID: 35184117 PMCID: PMC9052863 DOI: 10.1097/njh.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this review was to explore the correlation between patients' fear of cancer recurrence (FCR) and radiotherapy. National Knowledge Infrastructure, Wanfang Database, China Science and Technology Journal Database, SinoMed, PubMed, Web of Science, EBSCO-CINAHL, Cochrane Library, and Ovid Embase were searched to identify relevant studies. Thirty-five eligible studies were included in the systematic review, and 22 of them were included in further meta-analysis. The results of the meta-analysis showed that the level of patients' FCR was positively correlated with radiotherapy, but the correlation was weak (overall r = 0.075; 95% confidence interval [CI], 0.046-0.103; P = .000). In terms of subgroup analysis based on cancer site (breast cancer vs other types of cancer), the breast cancer group (r = 0.086; 95% CI, 0.027-0.143; P = .004), the mixed-type group (r = 0.073; 95% CI, 0.033-0.112; P = .000), and the other-type group (r = 0.071; 95% CI, 0.015-0.126; P = .013) have a positive correlation with radiotherapy. Patients' FCR positively correlated with the receipt of radiotherapy. However, because of the variability among the studies, the results have limitations. Therefore, longitudinal studies are needed to verify the trajectory of FCR over radiation therapy.
Collapse
|
10
|
Discoidin domain receptor 1 promotes lung adenocarcinoma migration via the AKT/snail signaling axis. Mol Biol Rep 2022; 49:7275-7286. [PMID: 35562515 DOI: 10.1007/s11033-022-07509-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Discoidin domain receptor 1 (DDR1), a member of receptor tyrosine kinase, has been implicated in tumor progression. However, the function and underlying mechanism of DDR1 in lung adenocarcinoma (LUAD) progression is unclear. Thus, we explored the molecular regulatory mechanism of DDR1 in the migration of LUAD. METHODS Transwell assays, wound healing assays and xenograft tumor assays were performed to study the function of DDR1 in the progression of LUAD. Immunoblotting and quantitative real-time polymerase chain reaction (RT-qPCR) were used to detect the expression levels of genes. Co-immunoprecipitation (co-IP) assays were performed to detect the interaction between DDR1 and AKT. Immunofluorescence and immunohistochemistry assays were used to determine the expression level of proteins in cells and tissues, respectively. RESULTS DDR1 expression was significantly higher in LUAD tissues than in normal lung tissues, and the level of DDR1 was inversely correlated with prognosis in patients. We found that DDR1 promoted the migration and invasion of LUAD cells in vitro. Furthermore, ectopic expression of DDR1 in LUAD cells altered EMT-related markers expression. Importantly, the DDR1 protein interacted with AKT and phosphorylated AKT. The AKT inhibitor MK2206 interrupted Snail upregulation in DDR1-overexpressing LUAD cells. Finally, our study revealed that depletion of DDR1 attenuated LUAD cell migration in a tumor xenograft mouse model. CONCLUSION Our findings uncovered that a high abundance of DDR1 increased the migration and invasion capability of LUAD cells via the AKT/Snail signaling axis and indicated that DDR1 could be a potential target for treating LUAD.
Collapse
|
11
|
Corry J, Ng WT, Ma SJ, Singh AK, de Graeff P, Oosting SF. Disadvantaged Subgroups Within the Global Head and Neck Cancer Population: How Can We Optimize Care? Am Soc Clin Oncol Educ Book 2022; 42:1-10. [PMID: 35439036 DOI: 10.1200/edbk_359482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Within the global head and neck cancer population, there are subgroups of patients with poorer cancer outcomes independent from tumor characteristics. In this article, we review three such groups. The first group comprises patients with nasopharyngeal cancer in low- and middle-income countries where access to high-volume, well-resourced radiotherapy centers is limited. We discuss a recent study that is aiming to improve outcomes through the instigation of a comprehensive radiotherapy quality assurance program. The second group comprises patients with low socioeconomic status in a high-income country who experience substantial financial toxicity, defined as financial hardship for patients due to health care costs. We review causes and consequences of financial toxicity and discuss how it can be mitigated. The third group comprises older patients who may poorly tolerate and not benefit from intensive standard-of-care treatment. We discuss the role of geriatric assessment, particularly in relation to the use of chemotherapy. Through better recognition and understanding of disadvantaged groups within the global head and neck cancer population, we will be better placed to instigate the necessary changes to improve outcomes and quality of life for patients with head and neck cancer.
Collapse
Affiliation(s)
- June Corry
- Division Radiation Oncology, GenesisCare Radiation OncologySt Vincent's Hospital, Melbourne, Australia.,Department of MedicineThe University of Melbourne, Parkville, Australia
| | - Wai Tong Ng
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong Kong, Hong Kong, China.,Clinical Oncology CentreThe University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Sung Jun Ma
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Pauline de Graeff
- University Center for Geriatric MedicineUniversity Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical OncologyUniversity Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:life11121437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
- Correspondence: ; Tel.: +39-08713554567
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
13
|
Assessment of systematic inflammatory and nutritional indexes in extensive-stage small-cell lung cancer treated with first-line chemotherapy and atezolizumab. Cancer Immunol Immunother 2021; 70:3199-3206. [PMID: 33796915 DOI: 10.1007/s00262-021-02926-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The present study aims to investigate the prognostic role of systematic inflammatory and nutritional indexes in extensive-stage small-cell lung cancer (ES-SCLC) treated with first-line chemotherapy and atezolizumab. MATERIALS AND METHODS Prospective cohort population involving 53 patients were identified from NCT03041311 trial. The following peripheral blood-derived inflammatory and nutritional indexes, including neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), prognostic nutrition index (PNI), advanced lung cancer inflammation index (ALI), and lung immune prognostic index (LIPI) were evaluated. RESULTS The optimal cut-off values of the ALI, LMR, NLR, PLR, PNI, SII and SIRI were 323.23, 2.73, 2.57, 119.23, 48, 533.28 and 2.32, respectively. With a median follow-up of 17.1 months, the 1-year OS and PFS were 56% and 8%, respectively. Multivariate analysis showed that PLR was the only independent prognostic factors for OS among ES-SCLC patients treated with chemotherapy and atezolizumab (HR 4.63, 95%CI: 1.00-21.46, p = 0.05). K-M analysis showed that the OS and PFS for patients with high PLR (> 119.23) were significantly poorer than these with low PLR (≤ 119.23) (p = 0.0004 for OS and p = 0.014 for PFS). In external validation set, prognosis of patients with high PLR was also significantly poorer than these with low PLR in terms of OS (p = 0.038) and PFS (p = 0.028). CONCLUSION Pre-treatment PLR could serve as a valuable independent prognostic factor for ES-SCLC who receive chemotherapy and immune checkpoint inhibitors. Further, prospective studies are still needed to confirm our findings.
Collapse
|