1
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
2
|
Leiphrakpam PD, Chowdhury S, Zhang M, Bajaj V, Dhir M, Are C. Trends in the Global Incidence of Pancreatic Cancer and a Brief Review of its Histologic and Molecular Subtypes. J Gastrointest Cancer 2025; 56:71. [PMID: 39992560 DOI: 10.1007/s12029-025-01183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
The global burden of pancreatic cancer has more than doubled in recent decades. It is now the sixth leading cause of cancer-related death worldwide, with an estimated 510,922 new cases and 467,409 deaths in 2022. The incidence of the disease continues to rise annually, with projections indicating a 95.4% increase in new cases by 2050, potentially reaching a total of 998,663 new cases globally. The overall five-year survival rate for pancreatic cancer is 10% worldwide, showing only a modest improvement compared to the past decade. The rising trends in the incidence rates are likely to continue as the global population ages and access to healthcare improves. The relatively low survival rate is primarily attributed to late-stage diagnoses and the lack of an effective screening method. Currently, population-based screening for asymptomatic individuals is not recommended, highlighting the importance of identifying and monitoring individuals at high risk for pancreatic cancer. Numerous studies have highlighted the differences in the molecular pathology of pancreatic cancer, underscoring the need for continued research to better understand these differences. The silent progression of the disease, poor prognosis, lack of screening options, and the necessity to improve our comprehension of its molecular characteristics emphasize the critical need for ongoing monitoring of disease trends at the population level. This review article analyses trends in the incidence of pancreatic cancer and its histological subtypes and provides an update on its molecular subtypes.
Collapse
Affiliation(s)
- Premila Devi Leiphrakpam
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chowdhury
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Zhang
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Varnica Bajaj
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mashaal Dhir
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chandrakanth Are
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Szymoński K, Janiszewska N, Sofińska K, Skirlińska-Nosek K, Lupa D, Czaja M, Urbańska M, Jurkowska K, Konik K, Olszewska M, Adamek D, Awsiuk K, Lipiec E. Spatial recognition and semi-quantification of epigenetic events in pancreatic cancer subtypes with multiplexed molecular imaging and machine learning. Sci Rep 2025; 15:6518. [PMID: 39987295 PMCID: PMC11846859 DOI: 10.1038/s41598-025-90087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
Genomic alterations are the driving force behind pancreatic cancer (PC) tumorigenesis, but they do not fully account for its diverse phenotypes. Investigating the epigenetic landscapes of PC offers a more comprehensive understanding and could identify targeted therapies that enhance patient survival. In this study, we have developed a new promising methodology of spatial epigenomics that integrates multiplexed molecular imaging with convolutional neural networks. Then, we used it to map epigenetic modification levels in the six most prevalent PC subtypes. We analyzed and semi-quantified the resulting molecular data, revealing significant variability in their epigenomes. DNA and histone modifications, specifically methylation and acetylation, were investigated. Using the same technique, we examined DNA conformational changes to further elucidate the transcriptional regulatory mechanisms involved in PC differentiation. Our results revealed that the foamy-gland and squamous-differentiated subtypes exhibited significantly increased global levels of epigenetic modifications and elevated Z-DNA ratios. Overall, our findings may suggest a potentially reduced efficacy of therapeutics targeting epigenetic regulators for these subtypes. Conversely, the conventional ductal PC subtype has emerged as a promising candidate for treatment with epigenetic modulators.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, Cracow, 33-332, Poland.
- Diagnostyka Consilio Sp. z o.o, Cracow, Poland.
| | - Natalia Janiszewska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Kamila Sofińska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Katarzyna Skirlińska-Nosek
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Dawid Lupa
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Michał Czaja
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Marta Urbańska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Katarzyna Jurkowska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Kamila Konik
- Department of Pathomorphology, University Hospital in Cracow, Cracow, Poland
| | - Marta Olszewska
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, Cracow, 33-332, Poland
- Diagnostyka Consilio Sp. z o.o, Cracow, Poland
| | - Kamil Awsiuk
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| |
Collapse
|
4
|
Iglesias-Matesanz P, Lacalle-Gonzalez C, Lopez-Blazquez C, Ochieng’ Otieno M, Garcia-Foncillas J, Martinez-Useros J. Glutathione Peroxidases: An Emerging and Promising Therapeutic Target for Pancreatic Cancer Treatment. Antioxidants (Basel) 2024; 13:1405. [PMID: 39594547 PMCID: PMC11591168 DOI: 10.3390/antiox13111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Glutathione peroxidases (GPxs) are a family of enzymes that play a critical role in cellular redox homeostasis through the reduction of lipid hydroperoxides to alcohols, using glutathione as a substrate. Among them, GPx4 is particularly of interest in the regulation of ferroptosis, a form of iron-dependent programmed cell death driven by the accumulation of lipid peroxides in the endoplasmic reticulum, mitochondria, and plasma membrane. Ferroptosis has emerged as a crucial pathway in the context of cancer, particularly pancreatic cancer, which is notoriously resistant to conventional therapies. GPx4 acts as a key inhibitor of ferroptosis by detoxifying lipid peroxides, thereby preventing cell death. However, this protective mechanism also enables cancer cells to survive under oxidative stress, which makes GPx4 a potential druggable target in cancer therapy. The inhibition of GPx4 can trigger ferroptosis selectively in cancer cells, especially in those that rely heavily on this pathway for survival, such as pancreatic cancer cells. Consequently, targeting GPx4 and other GPX family members offers a promising therapeutic strategy to sensitize pancreatic cancer cells to ferroptosis, potentially overcoming resistance to current treatments and improving patient outcomes. Current research is focusing on the development of small-molecule inhibitors of GPx4 as potential candidates for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Paula Iglesias-Matesanz
- Genomics and Therapeutics in Prostate Cancer Group, I+12 Biomedical Research Institute, 28041 Madrid, Spain;
| | | | - Carlos Lopez-Blazquez
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
| | - Michael Ochieng’ Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
5
|
Carlomagno S, Setti C, Ortolani F, Sivori S. Pancreatic ductal adenocarcinoma microenvironment: Soluble factors and cancer associated fibroblasts as modulators of NK cell functions. Immunol Lett 2024; 269:106898. [PMID: 39019404 DOI: 10.1016/j.imlet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the most frequent pancreatic cancer and represents one of the most aggressive human neoplasms. Typically identified at advance stage disease, most PDAC tumors are unresectable and resistant to standard therapies. The immunosuppressive microenvironment in PDAC impedes tumor control but a greater understanding of the complex stromal interactions within the tumor microenvironment (TME) and the development of strategies capable of restoring antitumor effector immune responses could be crucial to fight this aggressive tumor and its spread. Natural Killer (NK) cells play a crucial role in cancer immunosurveillance and represent an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. This review describes some crucial components of the PDAC TME (collagens, soluble factors and fibroblasts) that can influence the presence, phenotype and function of NK cells in PDAC patients tumor tissue. This focused overview highlights the therapeutic relevance of dissecting the complex stromal composition to define new strategies for NK cell-based immunotherapies to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Simona Carlomagno
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy.
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Fulvia Ortolani
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
6
|
Low RRJ, Fung KY, Dagley LF, Yousef J, Emery-Corbin SJ, Putoczki TL. Unbiased Quantitative Proteomics of Organoid Models of Pancreatic Cancer. Methods Mol Biol 2024; 2823:77-93. [PMID: 39052215 DOI: 10.1007/978-1-0716-3922-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal solid malignancy with many patients succumbing to the disease within 6 months of diagnosis. The mechanisms that underlie PDAC initiation and progression are poorly understood. Current treatment options are primarily limited to chemotherapy, which is often provided with palliative intent. Unfortunately, there are no robust biomarkers to guide treatment selection or monitor treatment response. This is concerning given the increasing incidence of this cancer. We and others have generated organoid models to explore the biology underlying PDAC with the goal of identifying new therapeutic targets. Here we provide protocols to generate a preclinical PDAC organoid model and methods to use these to define the proteomic landscape of this cancer.
Collapse
Affiliation(s)
- Ronnie Ren Jie Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Currently at the DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ka Yee Fung
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jumana Yousef
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Samantha J Emery-Corbin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Lopez-Blazquez C, Lacalle-Gonzalez C, Sanz-Criado L, Ochieng’ Otieno M, Garcia-Foncillas J, Martinez-Useros J. Iron-Dependent Cell Death: A New Treatment Approach against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:14979. [PMID: 37834426 PMCID: PMC10573128 DOI: 10.3390/ijms241914979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating tumor type where a very high proportion of people diagnosed end up dying from cancer. Surgical resection is an option for only about 20% of patients, where the 5-year survival increase ranges from 10 to 25%. In addition to surgical resection, there are adjuvant chemotherapy schemes, such as FOLFIRINOX (a mix of Irinotecan, oxaliplatin, 5-Fluorouraci and leucovorin) or gemcitabine-based treatment. These last two drugs have been compared in the NAPOLI-3 clinical trial, and the NALIRIFOX arm was found to have a higher overall survival (OS) (11.1 months vs. 9.2 months). Despite these exciting improvements, PDAC still has no effective treatment. An interesting approach would be to drive ferroptosis in PDAC cells. A non-apoptotic reactive oxygen species (ROS)-dependent cell death, ferroptosis was first described by Dixon et al. in 2012. ROS are constantly produced in the tumor cell due to high cell metabolism, which is even higher when exposed to chemotherapy. Tumor cells have detoxifying mechanisms, such as Mn-SOD or the GSH-GPX system. However, when a threshold of ROS is exceeded in the tumor cell, the cell's antioxidant systems are overwhelmed, resulting in lipid peroxidation and, ultimately, ferroptosis. In this review, we point out ferroptosis as an approach to consider in PDAC and propose that altering the cellular ROS balance by combining oxidizing agents or with inhibitors of the main cellular detoxifiers triggers ferroptosis in PDAC.
Collapse
Affiliation(s)
- Carlos Lopez-Blazquez
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Carlos Lacalle-Gonzalez
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Lara Sanz-Criado
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Michael Ochieng’ Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Jesus Garcia-Foncillas
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
8
|
McCarthy GA, Di Niro R, Finan JM, Jain A, Guo Y, Wyatt C, Guimaraes A, Waugh T, Keith D, Morgan T, Sears R, Brody J. Deletion of the mRNA stability factor ELAVL1 (HuR) in pancreatic cancer cells disrupts the tumor microenvironment integrity. NAR Cancer 2023; 5:zcad016. [PMID: 37089813 PMCID: PMC10113877 DOI: 10.1093/narcan/zcad016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Stromal cells promote extensive fibrosis in pancreatic ductal adenocarcinoma (PDAC), which is associated with poor prognosis and therapeutic resistance. We report here for the first time that loss of the RNA-binding protein human antigen R (HuR, ELAVL1) in PDAC cells leads to reprogramming of the tumor microenvironment. In multiple in vivo models, CRISPR deletion of ELAVL1 in PDAC cells resulted in a decrease of collagen deposition, accompanied by a decrease of stromal markers (i.e. podoplanin, α-smooth muscle actin, desmin). RNA-sequencing data showed that HuR plays a role in cell-cell communication. Accordingly, cytokine arrays identified that HuR regulates the secretion of signaling molecules involved in stromal activation and extracellular matrix organization [i.e. platelet-derived growth factor AA (PDGFAA) and pentraxin 3]. Ribonucleoprotein immunoprecipitation analysis and transcription inhibition studies validated PDGFA mRNA as a novel HuR target. These data suggest that tumor-intrinsic HuR supports extrinsic activation of the stroma to produce collagen and desmoplasia through regulating signaling molecules (e.g. PDGFAA). HuR-deficient PDAC in vivo tumors with an altered tumor microenvironment are more sensitive to the standard of care gemcitabine, as compared to HuR-proficient tumors. Taken together, we identified a novel role of tumor-intrinsic HuR in its ability to modify the surrounding tumor microenvironment and regulate PDGFAA.
Collapse
Affiliation(s)
- Grace A McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexander R Guimaraes
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Trent A Waugh
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
9
|
Mercanti L, Sindaco M, Mazzone M, Di Marcantonio MC, Piscione M, Muraro R, Mincione G. PDAC, the Influencer Cancer: Cross-Talk with Tumor Microenvironment and Connected Potential Therapy Strategies. Cancers (Basel) 2023; 15:2923. [PMID: 37296886 PMCID: PMC10251917 DOI: 10.3390/cancers15112923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of death by cancer in the world. What makes this pathological condition particularly lethal is a combination of clinical and molecular heterogeneity, lack of early diagnostic indexes, and underwhelming results from current therapeutic protocols. A major cause of PDAC chemoresistance seems to lie in the ability of cancer cells to spread out and fill the pancreatic parenchyma, exchanging nutrients, substrates, and even genetic material with cells from the surrounding tumor microenvironment (TME). Several components can be found in the TME ultrastructure, including collagen fibers, cancer-associated fibroblasts, macrophages, neutrophils, mast cells, and lymphocytes. Cross-talk between PDAC and TME cells results in the latter being converted into cancer-favoring phenotypes; this behavior could be compared to an influencer guiding followers into supporting his activity. Moreover, TME could be a potential target for some of the newest therapeutic strategies; these include the use of pegvorhyaluronidase-α and CAR-T lymphocytes against HER2, FAP, CEA, MLSN, PSCA, and CD133. Other experimental therapy options are being currently studied, aiming to interfere with the KRAS pathway, DNA-repairing proteins, and apoptosis resistance in PDAC cells. Hopefully these new approaches will grant better clinical outcomes in future patients.
Collapse
Affiliation(s)
- Leonardo Mercanti
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Sindaco
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | | | - Raffaella Muraro
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| |
Collapse
|
10
|
Jbara A, Lin KT, Stossel C, Siegfried Z, Shqerat H, Amar-Schwartz A, Elyada E, Mogilevsky M, Raitses-Gurevich M, Johnson JL, Yaron TM, Ovadia O, Jang GH, Danan-Gotthold M, Cantley LC, Levanon EY, Gallinger S, Krainer AR, Golan T, Karni R. RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer. Nature 2023; 617:147-153. [PMID: 36949200 PMCID: PMC10156590 DOI: 10.1038/s41586-023-05820-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases1-3. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in PDA. RNA-sequencing and splicing analysis of RBFOX2 target genes revealed enrichment of genes in the RHO GTPase pathways, suggesting a role of RBFOX2 splicing activity in cytoskeletal organization and focal adhesion formation. Modulation of RBFOX2-regulated splicing events, such as via myosin phosphatase RHO-interacting protein (MPRIP), is associated with PDA metastases, altered cytoskeletal organization and the induction of focal adhesion formation. Our results implicate the splicing-regulatory function of RBFOX2 as a tumour suppressor in PDA and suggest a therapeutic approach for metastatic PDA.
Collapse
Affiliation(s)
- Amina Jbara
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Chani Stossel
- Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haya Shqerat
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Adi Amar-Schwartz
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ela Elyada
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ofek Ovadia
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gun Ho Jang
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Miri Danan-Gotthold
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Steven Gallinger
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | - Talia Golan
- Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
11
|
von den Driesch J, Flöttmann J, Prall F, Mullins CS, Linnebacher M, Bürtin F. HROP68: A rare case of medullary pancreatic cancer-characterization and chemosensitivity of the first patient-derived cell line. Front Oncol 2023; 12:1082927. [PMID: 36761421 PMCID: PMC9904236 DOI: 10.3389/fonc.2022.1082927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Medullary pancreatic carcinoma (MPC) is a rare subtype of pancreatic ductal adenocarcinoma. MPCs represent less than 1% of all pancreatic cancers, and, with only 26 cases in the literature, knowledge regarding drug response and treatment outcome is very limited. Material and methods We present the case of a 64-year-old male patient with MPC who was treated by left pancreatic resection and adjuvant chemotherapy. Due to local recurrence, the patient underwent intended curative reoperation. From both surgical specimens, patient-derived xenografts (PDXs) and, from the recurrence, a patient-derived cell line (PDCL) were established. We subsequently performed an in-depth characterization of this cell line including phenotypic characterization, surface protein expression, growth, and migratory performance as well as mutational analysis using whole-exome sequencing (WES). Additionally, in vitro drug sensitivity toward the standard-of-care chemotherapeutic regimen and selected targeted therapies was evaluated. Results The pathological and molecular properties of this rare MPC case observed in the patient's tumors are preserved in the corresponding PDX and the PDCL of HROP68Tu2. Despite displaying an "immunogenic phenotype" with marked T-cell infiltration and a high-level expression of HLA II and Programmed death-ligand 1 (PD-L1), molecular analysis revealed microsatellite stability but a multitude of mutations affecting KRAS, TP53, KAT6B, FOXG1, RUNX1, and GRIK2 among others. Furthermore, HROP68Tu2 cells were susceptible toward 5-FU, irinotecan, oxaliplatin, gemcitabine, paclitaxel, and erlotinib as single agents, but only a moderate synergistic response was seen to the drugs of the FOLFIRINOX regimen. Even worse, the drugs of the two combinations gemcitabine plus paclitaxel and gemcitabine plus erlotinib showed antagonistic effects. Moreover, lapatinib, PRIMA-Met1, and olaparib selected as targeted therapeutics according to the mutational profiles and protein expression inhibited HROP68Tu2 cells' growth. Conclusion This study illustrates the establishment of the first preclinical MPC models as well as the first in-depth characterization of an MPC PDCL. Since the scientific and clinical knowledge of this rare pancreatic cancer type is very limited, the presented models contribute to a better understanding of MPC and might be a valuable tool for the development of future treatment options.
Collapse
Affiliation(s)
- Jens von den Driesch
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Jana Flöttmann
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Christina S. Mullins
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Michael Linnebacher
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany,*Correspondence: Michael Linnebacher,
| | - Florian Bürtin
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Li W, Gonzalez-Gonzalez M, Sanz-Criado L, Garcia-Carbonero N, Celdran A, Villarejo-Campos P, Minguez P, Pazo-Cid R, Garcia-Jimenez C, Orta-Ruiz A, Garcia-Foncillas J, Martinez-Useros J. A Novel PiRNA Enhances CA19-9 Sensitivity for Pancreatic Cancer Identification by Liquid Biopsy. J Clin Med 2022; 11:7310. [PMID: 36555927 PMCID: PMC9784851 DOI: 10.3390/jcm11247310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the deadliest tumours worldwide, and its poor prognosis is due to an inability to detect the disease at the early stages, thereby creating an urgent need to develop non-invasive biomarkers. P-element-induced wimpy testis (PIWI) proteins work together with piwi-interacting RNAs (piRNAs) to perform epigenetic regulation and as such hold great potential as biomarkers for pancreatic cancer. PIWIL2 and PIWIL4 are associated with better prognosis, while PIWIL1 and PIWIL3 involvement appears to be associated with carcinogenesis. We aimed to discover PIWIL3- and PIWIL4-modulated piRNAs and determine their potential mechanisms in pancreatic cancer and the clinical implications. PIWIL3 or PIWIL4 was downregulated in pancreatic cancer-derived cell lines or in a non-tumour cell line. Differentially expressed piRNAs were analysed by next generation sequencing of small RNA. Nine fresh-frozen samples from solid human pancreases (three healthy pancreases, three intraductal papillary mucinous neoplasms, and three early-stage pancreatic cancers) were included in the sequencing analysis. Two piRNAs associated with PIWIL3 (piR-168112 and piR-162725) were identified in the neoplastic cells; in untransformed samples, we identified one piRNA associated with PIWIL4 (pir-366845). After validation in pancreatic cancer-derived cell lines and one untransformed pancreatic cell line, these piRNAs were evaluated in plasma samples from healthy donors (n = 27) or patients with pancreatic cancer (n = 45). Interestingly, piR-162725 expression identified pancreatic cancer patients versus healthy donors in liquid biopsies. Moreover, the potential of the serum carbohydrate antigen 19-9 (CA19-9) biomarker to identify pancreatic cancer patients was greatly enhanced when combined with piR-162725 detection. The enhanced diagnostic potential for the early detection of pancreatic cancer in liquid biopsies of these new small non-coding RNAs will likely improve the prognosis and management of this deadly cancer.
Collapse
Affiliation(s)
- Weiyao Li
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510085, China
| | | | - Lara Sanz-Criado
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundacion Jimenez Diaz, Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundacion Jimenez Diaz, Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Angel Celdran
- General and Hepatobiliary Surgery Unit, Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain
| | - Pedro Villarejo-Campos
- General and Hepatobiliary Surgery Unit, Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain
| | - Pablo Minguez
- Genetics and Genomics Department, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Bioinformatics Unit, IIS-FJD, UAM, 28040 Madrid, Spain
| | - Roberto Pazo-Cid
- Department of Medical Oncology, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Custodia Garcia-Jimenez
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Alberto Orta-Ruiz
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, 28040 Madrid, Spain
- Department of Medical Oncology, MD Anderson Cancer Center Madrid, 28033 Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundacion Jimenez Diaz, Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundacion Jimenez Diaz, Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
13
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
14
|
Salinas-Miranda E, Healy GM, Grünwald B, Jain R, Deniffel D, O'Kane GM, Grant R, Wilson J, Knox J, Gallinger S, Fischer S, Khokha R, Haider MA. Correlation of transcriptional subtypes with a validated CT radiomics score in resectable pancreatic ductal adenocarcinoma. Eur Radiol 2022; 32:6712-6722. [PMID: 36006427 DOI: 10.1007/s00330-022-09057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Transcriptional classifiers (Bailey, Moffitt and Collison) are key prognostic factors of pancreatic ductal adenocarcinoma (PDAC). Among these classifiers, the squamous, basal-like, and quasimesenchymal subtypes overlap and have inferior survival. Currently, only an invasive biopsy can determine these subtypes, possibly resulting in treatment delay. This study aimed to investigate the association between transcriptional subtypes and an externally validated preoperative CT-based radiomic prognostic score (Rad-score). METHODS We retrospectively evaluated 122 patients who underwent resection for PDAC. All treatment decisions were determined at multidisciplinary tumor boards. Tumor Rad-score values from preoperative CT were dichotomized into high or llow categories. The primary endpoint was the correlation between the transcriptional subtypes and the Rad-score using multivariable linear regression, adjusting for clinical and histopathological variables (i.e., tumor size). Prediction of overall survival (OS) was secondary endpoint. RESULTS The Bailey transcriptional classifier significantly associated with the Rad-score (coefficient = 0.31, 95% confidence interval [CI]: 0.13-0.44, p = 0.001). Squamous subtype was associated with high Rad-scores while non-squamous subtype was associated with low Rad-scores (adjusted p = 0.03). Squamous subtype and high Rad-score were both prognostic for OS at multivariable analysis with hazard ratios (HR) of 2.79 (95% CI: 1.12-6.92, p = 0.03) and 4.03 (95% CI: 1.42-11.39, p = 0.01), respectively. CONCLUSIONS In patients with resectable PDAC, an externally validated prognostic radiomic model derived from preoperative CT is associated with the Bailey transcriptional classifier. Higher Rad-scores were correlated with the squamous subtype, while lower Rad-scores were associated with the less lethal subtypes (immunogenic, ADEX, pancreatic progenitor). KEY POINTS • The transcriptional subtypes of PDAC have been shown to have prognostic importance but they require invasive biopsy to be assessed. • The Rad-score radiomic biomarker, which is obtained non-invasively from preoperative CT, correlates with the Bailey squamous transcriptional subtype and both are negative prognostic biomarkers. • The Rad-score is a promising non-invasive imaging biomarker for personalizing neoadjuvant approaches in patients undergoing resection for PDAC, although additional validation studies are required.
Collapse
Affiliation(s)
- Emmanuel Salinas-Miranda
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6th Floor, Office 6 200, Toronto, ON, M5G 1X5, Canada.,Joint Department of Medical Imaging, University Health Network/Sinai Health System, 600 University Ave, 5th Floor, Toronto, ON, M5G1X5, Canada
| | - Gerard M Healy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6th Floor, Office 6 200, Toronto, ON, M5G 1X5, Canada.,Joint Department of Medical Imaging, University Health Network/Sinai Health System, 600 University Ave, 5th Floor, Toronto, ON, M5G1X5, Canada.,Department of Medical Imaging, University of Toronto, 263 McCaul St 4th Floor, Toronto, ON, M5T 1W5, Canada
| | - Barbara Grünwald
- Department of Pathology, University Health Network, 610 University Ave, Toronto, ON, M5G 2C1, Canada.,PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Rahi Jain
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, 610 University Ave, Toronto, ON, M5G 2C1, Canada
| | - Dominik Deniffel
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6th Floor, Office 6 200, Toronto, ON, M5G 1X5, Canada
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada.,Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Ave, Toronto, ON, M5G 2C1, Canada
| | - Robert Grant
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada.,Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Ave, Toronto, ON, M5G 2C1, Canada
| | - Julie Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Jennifer Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada.,Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Ave, Toronto, ON, M5G 2C1, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada.,Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Ave, Toronto, ON, M5G 2C1, Canada.,Hepatobiliary Pancreatic Surgical Oncology Program, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Sandra Fischer
- Department of Pathology, University Health Network, 610 University Ave, Toronto, ON, M5G 2C1, Canada
| | - Rama Khokha
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Ave, Toronto, ON, M5G 2C1, Canada
| | - Masoom A Haider
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6th Floor, Office 6 200, Toronto, ON, M5G 1X5, Canada. .,Joint Department of Medical Imaging, University Health Network/Sinai Health System, 600 University Ave, 5th Floor, Toronto, ON, M5G1X5, Canada. .,Department of Medical Imaging, University of Toronto, 263 McCaul St 4th Floor, Toronto, ON, M5T 1W5, Canada. .,PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada.
| |
Collapse
|
15
|
Zhang Z, Pan J, Cheng D, Shi Y, Wang L, Mi Z, Fu J, Tao H, Fan H. Expression of lactate-related signatures correlates with immunosuppressive microenvironment and prognostic prediction in ewing sarcoma. Front Genet 2022; 13:965126. [PMID: 36092937 PMCID: PMC9448906 DOI: 10.3389/fgene.2022.965126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Ewing sarcoma (EWS) is an aggressive tumor of bone and soft tissue. Growing evidence indicated lactate as a pivotal mediator of crosstalk between tumor energy metabolism and microenvironmental regulation. However, the contribution of lactate-related genes (LRGs) in EWS is still unclear.Methods: We obtained the transcriptional data of EWS patients from the GEO database and identified differentially expressed-LRGs (DE-LRGs) between EWS patient samples and normal tissues. Unsupervised cluster analysis was utilized to recognize lactate modulation patterns based on the expression profile of DE-LRGs. Functional enrichment including GSEA and GSVA analysis was conducted to identify molecular signaling enriched in different subtypes. ESTIMATE, MCP and CIBERSORT algorithm was used to explore tumor immune microenvironment (TIME) between subtypes with different lactate modulation patterns. Then, lactate prognostic risk signature was built via univariate, LASSO and multivariate Cox analysis. Finally, we performed qPCR analysis to validate candidate gene expression.Result: A total of 35 DE-LRGs were identified and functional enrichment analysis indicated that these LRGs were involved in mitochondrial function. Unsupervised cluster analysis divided EWS patients into two lactate modulation patterns and we revealed that patients with Cluster 1 pattern were linked to poor prognosis and high lactate secretion status. Moreover, TIME analysis indicated that the abundance of multiple immune infiltrating cells were dramatically elevated in Cluster 1 to Cluster 2, including CAFs, endothelial cells, Macrophages M2, etc., which might contribute to immunosuppressive microenvironment. We also noticed that expression of several immune checkpoint proteins were clearly increased in Cluster 1 to Cluster 2. Subsequently, seven genes were screened to construct LRGs prognostic signature and the performance of the resulting signature was validated in the validation cohort. Furthermore, a nomogram integrating LRGs signature and clinical characteristics was developed to predict effectively the 4, 6, and 8-year prognosis of EWS patients.Conclusion: Our study revealed the role of LRGs in immunosuppressive microenvironment and predicting prognosis in EWS and provided a robust tool to predict the prognosis of EWS patients.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jingxin Pan
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Debin Cheng
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yubo Shi
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lei Wang
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhenzhou Mi
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jun Fu
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Huiren Tao
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen, China
| | - Hongbin Fan
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Hongbin Fan,
| |
Collapse
|
16
|
Madeddu C, Sanna E, Nemolato S, Mulas O, Oppi S, Scartozzi M, La Nasa G, Maccio A. Pathogenic and Prognostic Roles of Paraneoplastic Leukocytosis in Cervical Cancer: Can Genomic-Based Targeted Therapies Have a Role? A Literature Review and an Emblematic Case Report. Diagnostics (Basel) 2022; 12:diagnostics12081910. [PMID: 36010260 PMCID: PMC9406983 DOI: 10.3390/diagnostics12081910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-associated leukocytosis has been associated with poor prognosis in cervical cancer. Leukemoid reaction (i.e., white blood cell count > 40,000/μL) is defined paraneoplastic (PLR) when it occurs in the presence of a cytokine-secreting tumor (CST) without neoplastic bone marrow infiltration. Cervical cancers displaying PLR represent a peculiar entity characterized by a rapidly progressive behavior typically associated with chemo-radioresistance. The present paper aims to review the literature about the pathogenetic mechanisms of PLR and its prognostic role in cervical cancer. Moreover, it reports the emblematic case of a patient with an advanced cervical cancer associated with PLR that was chemotherapy resistant. The patient underwent a palliative cytoreductive surgery of high complexity, obtaining a temporary regression of PLR. The tumor sample stained positive for G-CSF and IL-6, thus indicating a CST. Notably, the tumor genomic analysis revealed a PI3CKA mutation. Therefore, at the instrumental evidence of a rapidly progressive disease relapse, which was accompanied by reappearance of PLR, we started a targeted treatment with a selective PIK3 inhibitor alpesilib combined with the JAK1-2 inhibitor ruxolitinib. We achieved a relief of symptoms and leukocytosis; however, severe side effects necessitated the treatment suspension. In conclusion, as therapeutic strategies for cancer with PLR are scarcely reported in literature, our study could contribute to expand our understanding of the topic and provide a basis for further research.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy
| | - Elisabetta Sanna
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Sonia Nemolato
- Department of Pathology, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Olga Mulas
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Sara Oppi
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Mario Scartozzi
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy
| | - Giorgio La Nasa
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Antonio Maccio
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
- Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy
- Correspondence: ; Tel.: +39-070-675-4228
| |
Collapse
|
17
|
Szymoński K, Milian-Ciesielska K, Lipiec E, Adamek D. Current Pathology Model of Pancreatic Cancer. Cancers (Basel) 2022; 14:2321. [PMID: 35565450 PMCID: PMC9105915 DOI: 10.3390/cancers14092321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive and lethal malignant neoplasms, ranking in seventh place in the world in terms of the incidence of death, with overall 5-year survival rates still below 10%. The knowledge about PC pathomechanisms is rapidly expanding. Daily reports reveal new aspects of tumor biology, including its molecular and morphological heterogeneity, explain complicated "cross-talk" that happens between the cancer cells and tumor stroma, or the nature of the PC-associated neural remodeling (PANR). Staying up-to-date is hard and crucial at the same time. In this review, we are focusing on a comprehensive summary of PC aspects that are important in pathologic reporting, impact patients' outcomes, and bring meaningful information for clinicians. Finally, we show promising new trends in diagnostic technologies that might bring a difference in PC early diagnosis.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland;
| | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland;
| | - Dariusz Adamek
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| |
Collapse
|
18
|
Kang BW, Chau I. Emerging agents for metastatic pancreatic cancer: spotlight on early phase clinical trials. Expert Opin Investig Drugs 2021; 30:1089-1107. [PMID: 34727804 DOI: 10.1080/13543784.2021.1995354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite the recent development of new chemotherapeutic regimens and combination strategies, metastatic pancreatic cancer (mPC) still shows only a modest response to conventional cytotoxic agents. However, several novel therapeutic agents targeting the unique features of mPC are showing promise in clinical trials. AREA COVERED This article reviews the current state of development of new agents targeting various systems and molecular pathways. We searched PubMed and clinicaltrials.gov in September 2021 with a special focus on ongoing early phase clinical trials to identify the promising therapeutic strategies for mPC. EXPERT OPINION Extensive tumor heterogeneity, complex tumor microenvironment, genetic alterations of the oncogenic signaling pathways, metabolic dysregulation, and a low immunogenicity are hurdles for current treatment approaches. Ongoing research efforts strive to overcome these hurdles and are showing some promising early results.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Kyungpook National University, Daegu, Republic of Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, Surrey, UK
| |
Collapse
|
19
|
Ge P, Luo Y, Chen H, Liu J, Guo H, Xu C, Qu J, Zhang G, Chen H. Application of Mass Spectrometry in Pancreatic Cancer Translational Research. Front Oncol 2021; 11:667427. [PMID: 34707986 PMCID: PMC8544753 DOI: 10.3389/fonc.2021.667427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in the digestive tract worldwide, with increased morbidity and mortality. In recent years, with the development of surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and the change of the medical thinking model, remarkable progress has been made in researching comprehensive diagnosis and treatment of PC. However, the present situation of diagnostic and treatment of PC is still unsatisfactory. There is an urgent need for academia to fully integrate the basic research and clinical data from PC to form a research model conducive to clinical translation and promote the proper treatment of PC. This paper summarized the translation progress of mass spectrometry (MS) in the pathogenesis, diagnosis, prognosis, and PC treatment to promote the basic research results of PC into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jialin Qu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
21
|
Wang K, Miao X, Kong F, Huang S, Mo J, Jin C, Zheng Y. Integrating Network Pharmacology and Experimental Verification to Explore the Mechanism of Effect of Zuojin Pills in Pancreatic Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3749-3764. [PMID: 34511884 PMCID: PMC8427689 DOI: 10.2147/dddt.s323360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Background and Aim Pancreatic cancer is one of the most malignant tumors worldwide. Zuojin pills (ZJP), a traditional Chinese medicine (TCM) formula, which can treat a variety of cancers. However, the active compounds present in ZJP and the potential mechanisms through which ZJP acts against pancreatic cancer have not been thoroughly investigated. Methods Data on pancreatic cancer-related genes, bioactive compounds, and potential targets of ZJP were downloaded from public databases. Bioinformatics analysis, including protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, was conducted to identify important components, potential targets, and signaling pathways through which ZJP affects pancreatic cancer. The results of this analysis were verified by in vitro experiments. Results The network pharmacology analysis results showed that 41 compounds and 130 putative target genes of ZJP were associated with anti-pancreatic cancer effects. ZJP may exert its inhibitory effects against pancreatic cancer by acting on key targets such as JUN, TP53, and MAPK1. Moreover, KEGG analysis indicated that the anti-pancreatic cancer effect of ZJP was mediated by multiple pathways, such as the PI3K-AKT, IL-17, TNF, HIF-1, and P53 signaling pathways. Among these, the PI3K-AKT signaling pathway, which included the highest number of enriched genes, may play a more important role in treating pancreatic cancer. The in vitro results showed that ZJP significantly inhibits the cell cycle and cell proliferation through the PI3K/AKT/caspase pathway and that it can induce apoptosis of pancreatic cancer cells, consistent with the results predicted by network pharmacological methods. Conclusion This study preliminarily investigated the pharmacological effects of ZJP, which appear to be mediated by multiple compounds, targets and pathways, and its potential therapeutic effect on pancreatic cancer. Importantly, our work provides a promising approach for the identification of compounds in TCM and the characterization of therapeutic mechanisms.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Xiongying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Yanwen Zheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
22
|
Gao Y, Zhang E, Fei X, Kong L, Liu P, Tan X. Identification of Novel Metabolism-Associated Subtypes for Pancreatic Cancer to Establish an Eighteen-Gene Risk Prediction Model. Front Cell Dev Biol 2021; 9:691161. [PMID: 34447748 PMCID: PMC8383117 DOI: 10.3389/fcell.2021.691161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PanC) is an intractable malignancy with a high mortality. Metabolic processes contribute to cancer progression and therapeutic responses, and histopathological subtypes are insufficient for determining prognosis and treatment strategies. In this study, PanC subtypes based on metabolism-related genes were identified and further utilized to construct a prognostic model. Using a cohort of 171 patients from The Cancer Genome Atlas (TCGA) database, transcriptome data, simple nucleotide variants (SNV), and clinical information were analyzed. We divided patients with PanC into metabolic gene-enriched and metabolic gene-desert subtypes. The metabolic gene-enriched subgroup is a high-risk subtype with worse outcomes and a higher frequency of SNVs, especially in KRAS. After further characterizing the subtypes, we constructed a risk score algorithm involving multiple genes (i.e., NEU2, GMPS, PRIM2, PNPT1, LDHA, INPP4B, DPYD, PYGL, CA12, DHRS9, SULT1E1, ENPP2, PDE1C, TPH1, CHST12, POLR3GL, DNMT3A, and PGS1). We verified the reproducibility and reliability of the risk score using three validation cohorts (i.e., independent datasets from TCGA, Gene Expression Omnibus, and Ensemble databases). Finally, drug prediction was completed using a ridge regression model, yielding nine candidate drugs for high-risk patients. These findings support the classification of PanC into two metabolic subtypes and further suggest that the metabolic gene-enriched subgroup is associated with worse outcomes. The newly established risk model for prognosis and therapeutic responses may improve outcomes in patients with PanC.
Collapse
Affiliation(s)
- Yang Gao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Fei
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingming Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
24
|
Sivakumar S, Abu-Shah E, Ahern DJ, Arbe-Barnes EH, Jainarayanan AK, Mangal N, Reddy S, Rendek A, Easton A, Kurz E, Silva M, Soonawalla Z, Heij LR, Bashford-Rogers R, Middleton MR, Dustin ML. Activated Regulatory T-Cells, Dysfunctional and Senescent T-Cells Hinder the Immunity in Pancreatic Cancer. Cancers (Basel) 2021; 13:1776. [PMID: 33917832 PMCID: PMC8068251 DOI: 10.3390/cancers13081776] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has one of the worst prognoses of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies. In this study, we analysed 32 human pancreatic cancer patients from two independent cohorts. A multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment. Regulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset. These data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies multiple novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Ahern
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| | | | - Ashwin K. Jainarayanan
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford OX3 7DQ, UK
| | - Nagina Mangal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Srikanth Reddy
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Aniko Rendek
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Alistair Easton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
| | - Elke Kurz
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| | - Michael Silva
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Zahir Soonawalla
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Lara R. Heij
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany;
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | | | - Mark R. Middleton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
- Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| |
Collapse
|
25
|
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2021; 14:280. [PMID: 33804613 PMCID: PMC8003696 DOI: 10.3390/ph14030280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Rita Rebelo
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal;
- ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|