1
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
2
|
Fernando A, Liyanage C, Srinivasan S, Panchadsaram J, Rothnagel JA, Clements J, Batra J. Iroquois homeobox 4 (IRX4) derived micropeptide promotes prostate cancer progression and chemoresistance through Wnt signalling dysregulation. COMMUNICATIONS MEDICINE 2024; 4:224. [PMID: 39487222 PMCID: PMC11530646 DOI: 10.1038/s43856-024-00613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/17/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a commonly diagnosed cancer. Genome-wide association studies have implicated Iroquois homeobox 4 (IRX4) in PCa susceptibility, yet its functional roles remain unclear. We discovered a 78-amino acid micropeptide (miPEP, IRX4_PEP1), encoded from the alternative start site within the IRX4 gene. The miPEPs, encoded through short open reading frames (sORFs) have emerged as regulators of diverse biological processes. However, the significance of miPEPs in prostate tumorigenesis and therapy response remains unexplored to date. Here, we demonstrated the unique role of IRX4_PEP1 in PCa. METHODS The role of IRX4_PEP1 was evaluated in PCa in vitro via functional assays and comprehensive pathway analysis. The interacting partners of IRX4_PEP1 were identified using an immunoprecipitation assay, and the impact of IRX4_PEP1 on PCa stem cells was assessed through a stem cell enrichment assay. Additionally, the expression of IRX4_PEP1 was evaluated in PCa patient samples for its potential diagnostic and prognostic significance. RESULTS Here we show IRX4_PEP1 promotes PCa cell proliferation, migration, and invasion by interacting with heterogeneous nuclear ribonucleoprotein K (HNRPK). Notably, IRX4_PEP1 dysregulates Wnt signalling by interacting with Catenin beta 1 (β catenin; CTNB1), elevating PCa stemness markers, and fostering docetaxel resistance. Clinically, IRX4_PEP1 expression is elevated in PCa tissues and correlates positively with disease aggressiveness. CTNNB1, HNRNPK levels, and ssGSEA enrichment score of WNT/CTNB1 signalling correlate positively with IRX4_PEP1 in PCa tissues. CONCLUSIONS These findings highlight IRX4_PEP1 role in PCa stemness and chemoresistance, suggesting it as a therapeutic target and potential diagnostic marker.
Collapse
Affiliation(s)
- Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Janaththani Panchadsaram
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Joseph A Rothnagel
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia Campus, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia.
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Gao Y, Kim H, Kitata RB, Lin TT, Swensen AC, Shi T, Liu T. Multiplexed quantitative proteomics in prostate cancer biomarker development. Adv Cancer Res 2024; 161:31-69. [PMID: 39032952 PMCID: PMC11987045 DOI: 10.1016/bs.acr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer among men in the United States. However, the widely used protein biomarker in PCa, prostate-specific antigen (PSA), while useful for initial detection, its use alone cannot detect aggressive PCa and can lead to overtreatment. This chapter provides an overview of PCa protein biomarker development. It reviews the state-of-the-art liquid chromatography-mass spectrometry-based proteomics technologies for PCa biomarker development, such as enhancing the detection sensitivity of low-abundance proteins through antibody-based or antibody-independent protein/peptide enrichment, enriching post-translational modifications such as glycosylation as well as information-rich extracellular vesicles, and increasing accuracy and throughput using advanced data acquisition methodologies. This chapter also summarizes recent PCa biomarker validation studies that applied those techniques in diverse specimen types, including cell lines, tissues, proximal fluids, urine, and blood, developing novel protein biomarkers for various clinical applications, including early detection and diagnosis, prognosis, and therapeutic intervention of PCa.
Collapse
Affiliation(s)
- Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
4
|
Liyanage C, Fernando A, Chamberlain A, Moradi A, Batra J. RNA m6a Methylation Regulator Expression in Castration-Resistant Prostate Cancer Progression and Its Genetic Associations. Cancers (Basel) 2024; 16:1303. [PMID: 38610981 PMCID: PMC11011207 DOI: 10.3390/cancers16071303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N6-methyladenosine (m6A) methylation, a prevalent epitranscriptomic modification, plays a crucial role in regulating mRNA expression, stability, and translation in mammals. M6A regulators have gained attention for their potential implications in tumorigenesis and clinical applications, such as cancer diagnosis and therapeutics. The existing literature predominantly addresses m6A regulators in the context of primary prostate cancer (PCa). However, a notable gap in the knowledge emerges regarding the dynamic expression patterns of these regulators as PCa progresses towards the castration-resistant stage (CRPC). Employing sequential window acquisition of all theoretical mass spectra (SWATH-MS) and RNAseq analysis, we comprehensively profiled the expression of 27 m6A regulators in hormone/androgen-dependent and -independent PCa cell lines, revealing distinct clustering between tumor and adjacent normal prostate tissues. High-grade PCa tumors demonstrated the upregulation of METTL3, RBM15B, and HNRNAPA2B1 and the downregulation of ZC3H13, NUDT21, and FTO. Notably, we identified six m6A regulators associated with PCa survival. Additionally, association analysis of the PCa-associated risk loci in the cancer genome atlas program (TCGA) data unveiled genetic variations near the WTAP, HNRNPA2B1, and FTO genes as significant expression quantitative trait loci. In summary, our study unraveled abnormalities in m6A regulator expression in PCa progression, elucidating their association with PCa risk loci. Considering the heterogeneity within the PCa phenotypes and treatment responses, our findings suggest that prognostic stratification based on m6A regulator expression could enhance PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Center for Genomics and Personalized Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Center for Genomics and Personalized Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Audrey Chamberlain
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Center for Genomics and Personalized Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Center for Genomics and Personalized Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Center for Genomics and Personalized Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
5
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|
6
|
Comparative Proteomic and Transcriptomic Analysis of the Impact of Androgen Stimulation and Darolutamide Inhibition. Cancers (Basel) 2022; 15:cancers15010002. [PMID: 36611998 PMCID: PMC9817687 DOI: 10.3390/cancers15010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Several inhibitors of androgen receptor (AR) function are approved for prostate cancer treatment, and their impact on gene transcription has been described. However, the ensuing effects at the protein level are far less well understood. We focused on the AR signaling inhibitor darolutamide and confirmed its strong AR binding and antagonistic activity using the high throughput cellular thermal shift assay (CETSA HT). Then, we generated comprehensive, quantitative proteomic data from the androgen-sensitive prostate cancer cell line VCaP and compared them to transcriptomic data. Following treatment with the synthetic androgen R1881 and darolutamide, global mass spectrometry-based proteomics and label-free quantification were performed. We found a generally good agreement between proteomic and transcriptomic data upon androgen stimulation and darolutamide inhibition. Similar effects were found both for the detected expressed genes and their protein products as well as for the corresponding biological programs. However, in a few instances there was a discrepancy in the magnitude of changes induced on gene expression levels compared to the corresponding protein levels, indicating post-transcriptional regulation of protein abundance. Chromatin immunoprecipitation DNA sequencing (ChIP-seq) and Hi-C chromatin immunoprecipitation (HiChIP) revealed the presence of androgen-activated AR-binding regions and long-distance AR-mediated loops at these genes.
Collapse
|
7
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
8
|
Ravuri HG, Noor Z, Mills PC, Satake N, Sadowski P. Data-Independent Acquisition Enables Robust Quantification of 400 Proteins in Non-Depleted Canine Plasma. Proteomes 2022; 10:9. [PMID: 35324581 PMCID: PMC8953371 DOI: 10.3390/proteomes10010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry-based plasma proteomics offers a major advance for biomarker discovery in the veterinary field, which has traditionally been limited to quantification of a small number of proteins using biochemical assays. The development of foundational data and tools related to sequential window acquisition of all theoretical mass spectra (SWATH)-mass spectrometry has allowed for quantitative profiling of a significant number of plasma proteins in humans and several animal species. Enabling SWATH in dogs enhances human biomedical research as a model species, and significantly improves diagnostic and disease monitoring capability. In this study, a comprehensive peptide spectral library specific to canine plasma proteome was developed and evaluated using SWATH for protein quantification in non-depleted dog plasma. Specifically, plasma samples were subjected to various orthogonal fractionation and digestion techniques, and peptide fragmentation data corresponding to over 420 proteins was collected. Subsequently, a SWATH-based assay was introduced that leveraged the developed resource and that enabled reproducible quantification of 400 proteins in non-depleted plasma samples corresponding to various disease conditions. The ability to profile the abundance of such a significant number of plasma proteins using a single method in dogs has the potential to accelerate biomarker discovery studies in this species.
Collapse
Affiliation(s)
- Halley Gora Ravuri
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Zainab Noor
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
9
|
A Prostate Cancer Proteomics Database for SWATH-MS Based Protein Quantification. Cancers (Basel) 2021; 13:cancers13215580. [PMID: 34771740 PMCID: PMC8582933 DOI: 10.3390/cancers13215580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Prostate cancer is the third most frequent cancer in men worldwide, with a notable increase in prevalence over the past two decades. The PSA is the only well-established protein biomarker for prostate cancer diagnosis, staging, and surveillance. It frequently leads to inaccurate diagnosis and overtreatment since it is an organ-specific biomarker rather than a tumour-specific biomarker. As a result, one of the primary goals of prostate cancer proteome research is to identify novel biomarkers that can be used with or instead of PSA, particularly in non-invasive blood samples. Thousands of peptides or assays were detected in blood samples from patients with low- to high-grade prostate cancer and healthy individuals, allowing data processing of sequential window acquisition of all theoretical mass spectra (SWATH-MS). By assisting in the detection of prostate cancer biomarkers in blood samples, this useful resource will improve our understanding of the role of proteomics in prostate cancer diagnosis and risk assessment. Abstract Prostate cancer is the most frequent form of cancer in men, accounting for more than one-third of all cases. Current screening techniques, such as PSA testing used in conjunction with routine procedures, lead to unnecessary biopsies and the discovery of low-risk tumours, resulting in overdiagnosis. SWATH-MS is a well-established data-independent (DI) method requiring prior knowledge of targeted peptides to obtain valuable information from SWATH maps. In response to the growing need to identify and characterise protein biomarkers for prostate cancer, this study explored a spectrum source for targeted proteome analysis of blood samples. We created a comprehensive prostate cancer serum spectral library by combining data-dependent acquisition (DDA) MS raw files from 504 patients with low, intermediate, or high-grade prostate cancer and healthy controls, as well as 304 prostate cancer-related protein in silico assays. The spectral library contains 114,684 transitions, which equates to 18,479 peptides translated into 1227 proteins. The robustness and accuracy of the spectral library were assessed to boost confidence in the identification and quantification of prostate cancer-related proteins across an independent cohort, resulting in the identification of 404 proteins. This unique database can facilitate researchers to investigate prostate cancer protein biomarkers in blood samples. In the real-world use of the spectrum library for biomarker detection, using a signature of 17 proteins, a clear distinction between the validation cohort’s pre- and post-treatment groups was observed. Data are available via ProteomeXchange with identifier PXD028651.
Collapse
|
10
|
Proteomic Landscape of Prostate Cancer: The View Provided by Quantitative Proteomics, Integrative Analyses, and Protein Interactomes. Cancers (Basel) 2021; 13:cancers13194829. [PMID: 34638309 PMCID: PMC8507874 DOI: 10.3390/cancers13194829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most frequent cancer of men worldwide. While the genetic landscapes and heterogeneity of prostate cancer are relatively well-known already, methodological developments now allow for studying basic and dynamic proteomes on a large scale and in a quantitative fashion. This aids in revealing the functional output of cancer genomes. It has become evident that not all aberrations at the genetic and transcriptional level are translated to the proteome. In addition, the proteomic level contains heterogeneity, which increases as the cancer progresses from primary prostate cancer (PCa) to metastatic and castration-resistant prostate cancer (CRPC). While multiple aspects of prostate adenocarcinoma proteomes have been studied, less is known about proteomes of neuroendocrine prostate cancer (NEPC). In this review, we summarize recent developments in prostate cancer proteomics, concentrating on the proteomic landscapes of clinical prostate cancer, cell line and mouse model proteomes interrogating prostate cancer-relevant signaling and alterations, and key prostate cancer regulator interactomes, such as those of the androgen receptor (AR). Compared to genomic and transcriptomic analyses, the view provided by proteomics brings forward changes in prostate cancer metabolism, post-transcriptional RNA regulation, and post-translational protein regulatory pathways, requiring the full attention of studies in the future.
Collapse
|
11
|
Identification and Characterization of Alternatively Spliced Transcript Isoforms of IRX4 in Prostate Cancer. Genes (Basel) 2021; 12:genes12050615. [PMID: 33919200 PMCID: PMC8143155 DOI: 10.3390/genes12050615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing (AS) is tightly regulated to maintain genomic stability in humans. However, tumor growth, metastasis and therapy resistance benefit from aberrant RNA splicing. Iroquois-class homeodomain protein 4 (IRX4) is a TALE homeobox transcription factor which has been implicated in prostate cancer (PCa) as a tumor suppressor through genome-wide association studies (GWAS) and functional follow-up studies. In the current study, we characterized 12 IRX4 transcripts in PCa cell lines, including seven novel transcripts by RT-PCR and sequencing. They demonstrate unique expression profiles between androgen-responsive and nonresponsive cell lines. These transcripts were significantly overexpressed in PCa cell lines and the cancer genome atlas program (TCGA) PCa clinical specimens, suggesting their probable involvement in PCa progression. Moreover, a PCa risk-associated SNP rs12653946 genotype GG was corelated with lower IRX4 transcript levels. Using mass spectrometry analysis, we identified two IRX4 protein isoforms (54.4 kDa, 57 kDa) comprising all the functional domains and two novel isoforms (40 kDa, 8.7 kDa) lacking functional domains. These IRX4 isoforms might induce distinct functional programming that could contribute to PCa hallmarks, thus providing novel insights into diagnostic, prognostic and therapeutic significance in PCa management.
Collapse
|