1
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
2
|
Hey S, Whyte D, Hoang MC, Le N, Natvig J, Wingfield C, Onyeama C, Howrylak J, Toby IT. Analysis of CDR3 Sequences from T-Cell Receptor β in Acute Respiratory Distress Syndrome. Biomolecules 2023; 13:biom13050825. [PMID: 37238695 DOI: 10.3390/biom13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is an illness that typically develops in people who are significantly ill or have serious injuries. ARDS is characterized by fluid build-up that occurs in the alveoli. T-cells are implicated as playing a role in the modulation of the aberrant response leading to excessive tissue damage and, eventually, ARDS. Complementarity Determining Region 3 (CDR3) sequences derived from T-cells are key players in the adaptive immune response. This response is governed by an elaborate specificity for distinct molecules and the ability to recognize and vigorously respond to repeated exposures to the same molecules. Most of the diversity in T-cell receptors (TCRs) is contained in the CDR3 regions of the heterodimeric cell-surface receptors. For this study, we employed the novel technology of immune sequencing to assess lung edema fluid. Our goal was to explore the landscape of CDR3 clonal sequences found within these samples. We obtained more than 3615 CDR3 sequences across samples in the study. Our data demonstrate that: (1) CDR3 sequences from lung edema fluid exhibit distinct clonal populations, and (2) CDR3 sequences can be further characterized based on biochemical features. Analysis of these CDR3 sequences offers insight into the CDR3-driven T-cell repertoire of ARDS. These findings represent the first step towards applications of this technology with these types of biological samples in the context of ARDS.
Collapse
Affiliation(s)
- Sara Hey
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Dayjah Whyte
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Minh-Chau Hoang
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Nick Le
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Joseph Natvig
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Claire Wingfield
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | | | - Judie Howrylak
- Pulmonary, Allergy and Critical Care Division, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Inimary T Toby
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| |
Collapse
|
3
|
Groenen PJTA, van den Brand M, Kroeze LI, Amir AL, Hebeda KM. Read the clonotype: Next-generation sequencing-based lymphocyte clonality analysis and perspectives for application in pathology. Front Oncol 2023; 13:1107171. [PMID: 36845702 PMCID: PMC9945094 DOI: 10.3389/fonc.2023.1107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Clonality assessment using the unique rearrangements of immunoglobulin (IG) and T-cell receptor (TR) genes in lymphocytes is a widely applied supplementary test for the diagnosis of B-cell and T-cell lymphoma. To enable a more sensitive detection and a more precise comparison of clones compared with conventional clonality analysis based on fragment analysis, the EuroClonality NGS Working Group developed and validated a next-generation sequencing (NGS)-based clonality assay for detection of the IG heavy and kappa light chain and TR gene rearrangements for formalin-fixed and paraffin-embedded tissues. We outline the features and advantages of NGS-based clonality detection and discuss potential applications for NGS-based clonality testing in pathology, including site specific lymphoproliferations, immunodeficiency and autoimmune disease and primary and relapsed lymphomas. Also, we briefly discuss the role of T-cell repertoire of reactive lymphocytic infiltrations in solid tumors and B-lymphoma.
Collapse
Affiliation(s)
- Patricia J. T. A. Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Pathology-DNA, Location Rijnstate Hospital, Arnhem, Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Avital L. Amir
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Gebauer N, Ziehm M, Gebauer J, Riecke A, Meyhöfer S, Kulemann B, von Bubnoff N, Steinestel K, Bauer A, Witte HM. The Glasgow Prognostic Score Predicts Survival Outcomes in Neuroendocrine Neoplasms of the Gastro-Entero-Pancreatic (GEP-NEN) System. Cancers (Basel) 2022; 14:cancers14215465. [PMID: 36358883 PMCID: PMC9656405 DOI: 10.3390/cancers14215465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Across a variety of solid tumors, prognostic implications of nutritional and inflammation-based risk scores have been identified as a complementary resource of risk stratification. Methods: In this retrospective study, we performed a comparative analysis of several established risk scores and ratios, such as the Glasgow Prognostic Score (GPS), in neuroendocrine neoplasms of the gastro−entero−pancreatic (GEP-NEN) system with respect to their prognostic capabilities. Clinicopathological and treatment-related data for 102 GEP-NEN patients administered to the participating institutions between 2011 and 2021 were collected. Scores/ratios significantly associated with overall or progression-free survival (OS, PFS) upon univariate analysis were subsequently included in a Cox-proportional hazard model for the multivariate analysis. Results: The median age was 62 years (range 18−95 years) and the median follow-up period spanned 51 months. Pancreatic or intestinal localization at the initial diagnosis were present in 41 (40.2%) and 44 (43.1%) cases, respectively. In 17 patients (16.7%), the primary manifestation could not be ascertained (NNUP; neuroendocrine neoplasms of unknown primary). Histological grading (HG) revealed 24/102 (23.5%) NET/NEC (poorly differentiated; high grade G3) and 78/102 (76.5%) NET (highly or moderately differentiated; low−high grade G1−G2). In total, 53/102 (51.9%) patients presented with metastatic disease (UICC IV), 11/102 (10.7%) patients presented with multifocal disease, and 56/102 (54.9%) patients underwent a primary surgical or endoscopic approach, whereas 28 (27.5%) patients received systemic cytoreductive treatment. The univariate analysis revealed the GPS and PI (prognostic index), as well as UICC-stage IV, HG, and the Charlson comorbidity index (CCI) to predict both the PFS and OS in GEP-NEN patients. However, the calculation of the survival did not separate GPS subgroups at lower risk (GPS 0 versus GPS 1). Upon the subsequent multivariate analysis, GPS was the only independent predictor of both OS (p < 0.0001; HR = 3.459, 95% CI = 1.263−6.322) and PFS (p < 0.003; HR = 2.119, 95% CI = 0.944−4.265). Conclusion: In line with previous results for other entities, the present study revealed the GPS at baseline to be the only independent predictor of survival across all stages of GEP-NEN, and thus supports its clinical utility for risk stratification in this group of patients.
Collapse
Affiliation(s)
- Niklas Gebauer
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Maria Ziehm
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Judith Gebauer
- Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Armin Riecke
- Department of Hematology and Oncology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Sebastian Meyhöfer
- Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Birte Kulemann
- Department of Surgery, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Nikolas von Bubnoff
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Konrad Steinestel
- Institute for Pathology and Molecular Pathology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Arthur Bauer
- Department of Hematology and Oncology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Hanno M. Witte
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Hematology and Oncology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
- Institute for Pathology and Molecular Pathology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
- Correspondence:
| |
Collapse
|
5
|
Chen Z, Zhu Q, Deng X, Yao W, Zhang W, Liu W, Tang Y, Zhao S. Angioimmunoblastic T-cell lymphoma with predominant CD8+ tumor-infiltrating T-cells is a distinct immune pattern with an immunosuppressive microenvironment. Front Immunol 2022; 13:987227. [PMID: 36325319 PMCID: PMC9618886 DOI: 10.3389/fimmu.2022.987227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background Angioimmunoblastic T-cell lymphoma (AITL) has a rich tumor microenvironment (TME) that typically harbors plenty of CD4+tumor infiltrating lymphocytes, (TIL)-T-cells (so called common AITL). Nonetheless, AITL with large numbers of CD8+TIL-Ts that outnumber CD4+cells have been observed (CD8-predominant AITL). However, detailed comparison of CD8-predominant AITL and common AITL are still lacking. Methods We compared clinicopathological features, TIL subsets, TME T cell receptor-β (TRB), and immunoglobulin heavy chain (IGH) repertoires, and gene expression profiles in six CD8-predominant and 12 common AITLs using case-control matching (2014 to 2019). Results Comparing with common AITLs, CD8-predominant AITLs showed more frequent edema (P = 0.011), effusion (P = 0.026), high elevated plasma EBV-DNA (P = 0.008), and shorter survival (P = 0.034). Moreover, they had more pronounced eosinophil increase (P = 0.004) and a higher Ki67 index (P = 0.041). Flow cytometry revealed an inverted CD4/CD8 ratio in TIL-Ts and lower TIL-B proportions (P = 0.041). TRB repertoire metrics deteriorated, including lower productive clones (P = 0.014) and higher clonality score (P = 0.019). The IGH repertoire was also narrowed, showing a higher proportion of the top 10 clones (P = 0.002) and lower entropy (P = 0.027). Gene expression analysis showed significant enrichment for upregulated negative regulation of immune system processes and downregulated T-cell activation and immune cell differentiation. Conclusion Our findings demonstrated that CD8-predominant AITL is a distinct immune pattern of AITL characterized by anti-tumor immunity impairment and an immunosuppressive microenvironment. These characteristics can interpret its severe clinical manifestations and poor outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Tang
- *Correspondence: Sha Zhao, ; Yuan Tang,
| | - Sha Zhao
- *Correspondence: Sha Zhao, ; Yuan Tang,
| |
Collapse
|
6
|
Cios KJ, Huda TI, Eakins RA, Mihyu MM, Blanck G. Specific TCR V-J gene segment recombinations leading to the identification pan-V-J CDR3s associated with survival distinctions: diffuse large B-cell lymphoma. Leuk Lymphoma 2022; 63:1314-1322. [PMID: 35019822 DOI: 10.1080/10428194.2021.2020781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the diffuse large B-cell lymphoma (DLBCL) setting, we examined lymph node biopsy, T-cell receptor features, and the DLBLC patient human leukocyte antigen (HLA) alleles, to provide a basis for assessing survival distinctions represented by the National Cancer Institute Center for Cancer Research (NCICCR) dataset. While previous analyses of other cancer datasets have indicated that specific T-cell receptor (TCR) V or J gene segments, independently, can be associated with a survival distinction, we have here identified V-J recombinations, representing specific V and J gene segments associated with survival distinctions. As specific V-J recombinations represent relatively conserved complementarity determining region-3 (CDR3) amino acid sequences, we assessed the entire DLBCL NCICCR dataset for such conserved CDR3 features. Overall, this approach indicated the opportunity of identifying DLBCL patient subpopulations with TCR CDR3 features, and HLA alleles, with significant survival distinctions, possibly identifying cohorts more likely to benefit from a given immunotherapy.
Collapse
Affiliation(s)
- Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Moody M Mihyu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|