1
|
Ramesh J, Gopalakrishnan RM, Nguyen THA, Lai SK, Li HY, Kim PS, Kutzner A, Inoue N, Heese K. Deciphering the molecular landscape of the FAM72 gene family: Implications for stem cell biology and cancer. Neurochem Int 2024; 180:105853. [PMID: 39236808 DOI: 10.1016/j.neuint.2024.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Family with sequence similarity 72 (FAM72) is a protein-coding gene family located on chromosome 1 in humans, uniquely featuring four paralogs: FAM72A, FAM72B, FAM72C, and FAM72D. While FAM72's presence as a gene pair with the SLIT-ROBO Rho GTPase-activating protein 2 (SRGAP2) is intriguing, its functional roles, particularly in neural stem cells, remain incompletely understood. This review explores the distinct characteristics of FAM72, shedding light on its expression patterns, potential roles in cell cycle regulation, stem cell renewal and implications in neurogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu, 600-113, India.
| | - Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600-025, India.
| | - Tuan Hoang Anh Nguyen
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Soak-Kuan Lai
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Hoi-Yeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul, 136-702, Republic of Korea.
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Noriko Inoue
- Osaka University Institute for Sports and Global Health, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
2
|
Gou H, Chen P, Wu W. FAM72 family proteins as poor prognostic markers in clear cell renal carcinoma. Biochem Biophys Rep 2023; 35:101506. [PMID: 37457361 PMCID: PMC10344709 DOI: 10.1016/j.bbrep.2023.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose This study aimed to investigate the prognostic significance of the Family with Sequence Similarity 72 member (FAM72) gene family in clear cell renal carcinoma (ccRCC) using a bioinformatic approach. Patients and methods To investigate the association between FAM72 and ccRCC, we utilized various databases and analysis tools, including TCGA, GEPIA, Metscape, cBioPortal, and MethSurv. We conducted an analysis of FAM72 expression levels in ccRCC tissues compared to normal kidney tissues and performed univariate and multivariate Cox analysis to determine the relationship between FAM72 expression and patient prognosis. Furthermore, we carried out Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to identify enriched biological processes associated with FAM72 expression. Additionally, we analyzed immune cell infiltration and the level of methylation in ccRCC patients. Our bioinformatic analysis revealed that FAM72 expression levels were significantly higher in ccRCC tissues than in normal kidney tissues. High expression of FAM72 was associated with poor prognosis in ccRCC patients and was found to be an independent prognostic factor for ccRCC. GO and GSEA analyses indicated that FAM72 was enriched in biological processes related to mitosis, cell cycle, and DNA metabolism. Moreover, we found a significant correlation between FAM72 and immune cell infiltration and the level of methylation in ccRCC patients. Conclusion Our findings suggest that FAM72 could serve as an unfavorable prognostic molecular marker for ccRCC. A comprehensive understanding of FAM72 could provide crucial insights into tumor progression and prognosis.
Collapse
Affiliation(s)
- Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ping Chen
- Department of Pharmacy, Suining Central Hospital, Suining, 629000, China
| | - Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
3
|
Shi T, Zhu J, Zhang X, Mao X. The Role of Hypoxia and Cancer Stem Cells in Development of Glioblastoma. Cancers (Basel) 2023; 15:cancers15092613. [PMID: 37174078 PMCID: PMC10177528 DOI: 10.3390/cancers15092613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is recognized as the most malignant brain tumor with a high level of hypoxia, containing a small population of glioblastoma stem like cells (GSCs). These GSCs have the capacity of self-renewal, proliferation, invasion and recapitulating the parent tumor, and are major causes of radio-and chemoresistance of GBM. Upregulated expression of hypoxia inducible factors (HIFs) in hypoxia fundamentally contributes to maintenance and progression of GSCs. Therefore, we thoroughly reviewed the currently acknowledged roles of hypoxia-associated GSCs in development of GBM. In detail, we recapitulated general features of GBM, especially GSC-related features, and delineated essential responses resulted from interactions between GSC and hypoxia, including hypoxia-induced signatures, genes and pathways, and hypoxia-regulated metabolic alterations. Five hypothesized GSC niches are discussed and integrated into one comprehensive concept: hypoxic peri-arteriolar niche of GSCs. Autophagy, another protective mechanism against chemotherapy, is also closely related to hypoxia and is a potential therapeutic target for GBM. In addition, potential causes of therapeutic resistance (chemo-, radio-, surgical-, immuno-), and chemotherapeutic agents which can improve the therapeutic effects of chemo-, radio-, or immunotherapy are introduced and discussed. At last, as a potential approach to reverse the hypoxic microenvironment in GBM, hyperbaric oxygen therapy (HBOT) might be an adjuvant therapy to chemo-and radiotherapy after surgery. In conclusion, we focus on demonstrating the important role of hypoxia on development of GBM, especially by affecting the function of GSCs. Important advantages have been made to understand the complicated responses induced by hypoxia in GBM. Further exploration of targeting hypoxia and GSCs can help to develop novel therapeutic strategies to improve the survival of GBM patients.
Collapse
Affiliation(s)
- Tingyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710024, China
| | - Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
4
|
Liu H, Huang Y, Chen Y, Tang Z, Huang M, Ming Y, Wang M, Chen W, Huang Z, Qing L, Wang Q, Jia B. Family with Sequence Similarity 72 (FAM72) - A prospective biomarker for poor prognosis in patients with oral squamous cell carcinoma. Arch Oral Biol 2023; 151:105695. [PMID: 37086493 DOI: 10.1016/j.archoralbio.2023.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023]
Abstract
OBJECTIVE To study the effect of FAM72 on the prognosis of patients with oral squamous cell carcinoma (OSCC) and to explore the relationship between FAM72 and OSCC. DESIGN We used a vast array of databases and analytical vehicles to assess the relation between FAM72 and OSCC, including The Cancer Genome Atlas (TCGA), Metascape, and MethSurv. We made a preliminary verification of OSCC lines and tissues by real time quantitative polymerase chain reaction (RT-qPCR). RESULTS FAM72 was higher in OSCC than in normal tissues. Analysis of univariate COX data indicated that elevated expression of FAM72A, FAM72B, and FAM72C in OSCC was related to poor overall survival. Moreover, FAM72B and FAM72C were independent of overall survival in multiple COX regression. FAM72A-D and its coexpressed genes in Metascape were analyzed by Gene Ontology (GO), they were enriched in cellular cycle, mitotic and DNA metabolism. Gene set enrichment analysis (GSEA) demonstrated an enrichment in pathways related to cell metabolism. Additionally, high FAM72 expression related to a worse prognosis in OSCC patients. FAM72A-D linked to the infiltration of tumor immune cell in OSCC patients. We found that methylation levels are likely linked to prognosis in OSCC patients. We used RT-qPCR to ascertain the differential FAM72B and FAM72C expression levels in cancer and paracancerous tissues of OSCC, human normal oral keratinocytes (HOK), and human tongue squamous cell carcinoma (Cal-33). CONCLUSION Our findings indicate that FAM72B and FAM72C are potential molecular markers of poor prognosis in OSCC and may act as novel targets for OSCC treatment strategies.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Zhou Q, Chen L, Yang L, Zhou H, Chen Y, Guo Y. Integrated systemic analysis of FAM72A to identify its clinical relevance, biological function, and relationship to drug sensitivity in hepatocellular carcinoma. Front Oncol 2022; 12:1046473. [DOI: 10.3389/fonc.2022.1046473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
BackgroundThe family with sequence similarity 72 member A (FAM72A) protein has been identified as an effector of multiple pathological processes in many cancers. The value of FAM72A in HCC remains largely unknown.MethodsData from TCGA-LIHC, ICGC-LIRI-JP, IMvigor210, cBioPortal, GeneMANIA, and TIMER were processed and visualized to explore the association between FAM72A and the prognosis, stemness phenotype, mutational burden, immune cell infiltration, and drug sensitivity in HCC patients. Potential pathways were also revealed. Furthermore, we experimentally verified the results in vivo and in vitro using immunohistochemistry, western blotting, and CCK-8 assays.ResultsFirst, FAM72A mRNA expression was significantly upregulated in HCC. High FAM72A expression was independently associated with a poor prognosis. Experimental validation confirmed that FAM72A was remarkably overexpressed in HCC patients and mice. Moreover, FAM72A knockdown suppressed HCC cell proliferation. In addition, the frequency of TP53 mutations was significantly higher in the high FAM72A expression group. Subsequently, the enrichment analysis revealed that FAM72A was closely related to immune processes and mTOR pathways. Silencing FAM72A increased the expression levels of mTOR in HCC cell lines. The FAM72A-mTOR pathway was strongly associated with a poor prognosis for patients with HCC. Patients with high FAM72A expression levels might be more resistant to sorafenib. Furthermore, the expression of FAM72A and mTOR was significantly associated with the abundance of some tumor-infiltrating immune cells, especially CD4+ T cells. Finally, patients with high levels of FAM72A and mTOR were more sensitive to immunotherapy.ConclusionsFAM72A, a member of the FAM72 family, might be a prognostic and immunotherapeutic target for HCC patients.
Collapse
|
6
|
The emerging roles of srGAPs in cancer. Mol Biol Rep 2021; 49:755-759. [PMID: 34825319 DOI: 10.1007/s11033-021-06872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
GTPase activating proteins (GAPs) were initially considered as the inhibitors of cell signaling pathways because of their nature to activate the intrinsic GTPase activity of the RhoGTPases. But recent studies of dysregulated GAPs in many cancers such as glioblastoma, colorectal cancer, breast cancer, and renal cancer have elucidated the important roles of GAPs in carcinogenesis and GAPs have been shown to perform multiple nonconventional functions in different contexts. We have discussed the recent developments in the roles played by different types of srGAPs (SLIT-ROBO Rho GTPase-activating proteins) in cancer.
Collapse
|
7
|
Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Identification of a Chemotherapeutic Lead Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with Genome Stability, Centromere Formation, and Genome Editing. Cancers (Basel) 2021; 13:5870. [PMID: 34831023 PMCID: PMC8616359 DOI: 10.3390/cancers13225870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 01/05/2023] Open
Abstract
Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity. In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using molecular docking and dynamics. In addition, through in silico screening, we identified withaferin B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Thanjavur 613403, India;
| | - Subrata Pramanik
- Department of Biology, Life Science Centre, School of Science and Technology, Örebro University, 701-82 Örebro, Sweden;
| | | | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 136-702, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
8
|
Stylli SS. Novel Treatment Strategies for Glioblastoma-A Summary. Cancers (Basel) 2021; 13:cancers13225868. [PMID: 34831020 PMCID: PMC8616394 DOI: 10.3390/cancers13225868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor in adults, accounting for approximately 80% of all brain-related malignancies [...].
Collapse
Affiliation(s)
- Stanley S. Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; or
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|