1
|
Dikoglu E, Pareja F. Molecular Basis of Breast Tumor Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:237-257. [PMID: 39821029 DOI: 10.1007/978-3-031-70875-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer (BC) is a profoundly heterogenous disease, with diverse molecular, histological, and clinical variations. The intricate molecular landscape of BC is evident even at early stages, illustrated by the complexity of the evolution from precursor lesions to invasive carcinoma. The key for therapeutic decision-making is the dynamic assessment of BC receptor status and clinical subtyping. Hereditary BC adds an additional layer of complexity to the disease, given that different cancer susceptibility genes contribute to distinct phenotypes and genomic features. Furthermore, the various BC subtypes display distinct metabolic demands and immune microenvironments. Finally, genotypic-phenotypic correlations in special histologic subtypes of BC inform diagnostic and therapeutic approaches, highlighting the significance of thoroughly comprehending BC heterogeneity.
Collapse
Affiliation(s)
- Esra Dikoglu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Charifa A, Agersborg S, Mohtashamian A, Ip A, Goy A, Albitar M. Liquid biopsy for evaluating mutations and chromosomal aberrations in cerebrospinal fluid from patients with primary or metastatic CNS tumors. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100281. [PMID: 40027311 PMCID: PMC11863705 DOI: 10.1016/j.jlb.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 03/05/2025]
Abstract
Background Cytopathology analysis of cerebrospinal fluid (CSF) is limited in detecting tumors in patients with suspected primary or metastatic central nervous system (CNS) malignancy. We investigated the use of CSF liquid biopsy (LBx) to detect neoplastic processes in the CNS. Methods Cell-free DNA (cfDNA) from the CSF of patients with suspected metastatic (N = 106) or primary CNS (N = 23) tumors was deep sequenced using a 302-gene panel. Results Four samples (3 %) (3 metastatic and 1 primary) failed sequencing quality control criteria. Metastatic tumor was confirmed in 84 (82 %) of the 103 patients suspected of metastatic tumor. Primary CNS tumor was confirmed in 11 of 22 (50 %) patients suspected of CNS tumor. Chromosomal abnormalities were detected in 55 samples (54 %). Germline mutations were detected in 23 (22 %) patients with metastatic tumors and in 1 (5 %) with a primary CNS tumor. Of the 29 patients with metastatic breast cancers, 2 (7 %) had mutations in ESR1 and 9 (31 %) had mutations in PIK3CA. Of the 21 patients with metastatic lung cancer, 9 (43 %) had EGFR mutations and 5 (24 %) had KRAS mutations. Upon comparing CSF LBx with peripheral blood LBx in 14 patients, 13 (93 %) showed only CHIP and one patient showed CNS primary tumor mutation. Serial samples from 14 patients demonstrate that CSF LBx can be used for monitoring therapy efficacy. Conclusions LBx using CSF is clinically reliable and provides informative results in a substantial proportion of patients with metastatic CNS tumors and to a lesser degree in patients with primary CNS tumors.
Collapse
Affiliation(s)
| | | | | | - Andrew Ip
- John Theurer Cancer Center, Hackensack, NJ, USA
| | - Andre Goy
- John Theurer Cancer Center, Hackensack, NJ, USA
| | | |
Collapse
|
3
|
Williams MJ, Oliphant MUJ, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Norton K, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon DA, Shah SP, Brugge JS, Aparicio S. Luminal breast epithelial cells of BRCA1 or BRCA2 mutation carriers and noncarriers harbor common breast cancer copy number alterations. Nat Genet 2024; 56:2753-2762. [PMID: 39567747 PMCID: PMC11631757 DOI: 10.1038/s41588-024-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The prevalence and nature of somatic copy number alterations (CNAs) in breast epithelium and their role in tumor initiation and evolution remain poorly understood. Using single-cell DNA sequencing (49,238 cells) of epithelium from BRCA1 and BRCA2 carriers or wild-type individuals, we identified recurrent CNAs (for example, 1q-gain and 7q, 10q, 16q and 22q-loss) that are present in a rare population of cells across almost all samples (n = 28). In BRCA1/BRCA2 carriers, these occur before loss of heterozygosity (LOH) of wild-type alleles. These CNAs, common in malignant tumors, are enriched in luminal cells but absent in basal myoepithelial cells. Allele-specific analysis of prevalent CNAs reveals that they arose by independent mutational events, consistent with convergent evolution. BRCA1/BRCA2 carriers contained a small percentage of cells with extreme aneuploidy, featuring loss of TP53, BRCA1/BRCA2 LOH and multiple breast cancer-associated CNAs. Our findings suggest that CNAs arising in normal luminal breast epithelium are precursors to clonally expanded tumor genomes.
Collapse
Affiliation(s)
- Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael U J Oliphant
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Vinci Au
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Liu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Baril
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Van Vliet
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacky Ch Yiu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren O'Connor
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Walter L Goh
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Alicia Pollaci
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diljot Grewal
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Klarisa Norton
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - McKenna Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Vikas Prabhakar
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Shailesh Agarwal
- Department of Surgery, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Deborah A Dillon
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA.
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Huang Y, Jay KL, Yen-Wen Huang A, Wan J, Jangam SV, Chorin O, Rothschild A, Barel O, Mariani M, Iascone M, Xue H, Huang J, Mignot C, Keren B, Saillour V, Mah-Som AY, Sacharow S, Rajabi F, Costin C, Yamamoto S, Kanca O, Bellen HJ, Rosenfeld JA, Palmer CGS, Nelson SF, Wangler MF, Martinez-Agosto JA. Loss-of-function in RBBP5 results in a syndromic neurodevelopmental disorder associated with microcephaly. Genet Med 2024; 26:101218. [PMID: 39036895 PMCID: PMC11648989 DOI: 10.1016/j.gim.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 (HGNC:9888) encodes a core member of the protein complex that methylates histone 3 lysine-4 and has not been implicated in human disease. METHODS We identify 5 unrelated individuals with de novo heterozygous variants in RBBP5. Three nonsense/frameshift and 2 missense variants were identified in probands with neurodevelopmental symptoms, including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models. RESULTS Both missense p.(T232I) and p.(E296D) variants affect evolutionarily conserved amino acids located at the interface between RBBP5 and the nucleosome. In Drosophila, overexpression analysis identifies partial loss-of-function mechanisms when the variants are expressed using the fly Rbbp5 or human RBBP5 cDNA. Loss of Rbbp5 leads to a reduction in brain size. The human reference or variant transgenes fail to rescue this loss and expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both missense variants are partial loss-of-function alleles. CONCLUSION Haploinsufficiency of RBBP5 observed through de novo null and hypomorphic loss-of-function variants is associated with a syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Yue Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Alden Yen-Wen Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jijun Wan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Odelia Chorin
- Institute for Rare Diseases, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Annick Rothschild
- Institute for Rare Diseases, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Ortal Barel
- Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Tel HaShomer, Israel; Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Milena Mariani
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Han Xue
- Shanghai Institute of Precision Medicine at Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine at Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cyril Mignot
- AP-HP Sorbonne Université, Département de Génétique, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, France
| | - Boris Keren
- Genetic Department, GCS SeqOIA, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Virginie Saillour
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | | | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Farrah Rajabi
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Carrie Costin
- Division of Medical Genetics, Akron Children's Hospital, Akron, OH
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Christina G S Palmer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX.
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| |
Collapse
|
5
|
Raj-Kumar PK, Lin X, Liu T, Sturtz LA, Gritsenko MA, Petyuk VA, Sagendorf TJ, Deyarmin B, Liu J, Praveen-Kumar A, Wang G, McDermott JE, Shukla AK, Moore RJ, Monroe ME, Webb-Robertson BJM, Hooke JA, Fantacone-Campbell L, Mostoller B, Kvecher L, Kane J, Melley J, Somiari S, Soon-Shiong P, Smith RD, Mural RJ, Rodland KD, Shriver CD, Kovatich AJ, Hu H. Proteogenomic characterization of difficult-to-treat breast cancer with tumor cells enriched through laser microdissection. Breast Cancer Res 2024; 26:76. [PMID: 38745208 PMCID: PMC11094977 DOI: 10.1186/s13058-024-01835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.
Collapse
Affiliation(s)
- Praveen-Kumar Raj-Kumar
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoying Lin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lori A Sturtz
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | - Brenda Deyarmin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Guisong Wang
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | - Anil K Shukla
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Jeffrey A Hooke
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Fantacone-Campbell
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Brad Mostoller
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Leonid Kvecher
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Kane
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jennifer Melley
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Stella Somiari
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | | | - Richard J Mural
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Craig D Shriver
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Albert J Kovatich
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA.
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
6
|
Williams MJ, Oliphant MU, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon D, Shah SP, Brugge J, Aparicio S. Luminal breast epithelial cells from wildtype and BRCA mutation carriers harbor copy number alterations commonly associated with breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591587. [PMID: 38746396 PMCID: PMC11092623 DOI: 10.1101/2024.05.01.591587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature of somatic copy number alterations and their role in tumor initiation and evolution is not well understood. Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs in an individual breast. Tissues from BRCA1 or BRCA2 mutation carriers contain a small percentage of cells with extreme aneuploidy, featuring loss of TP53 , LOH of BRCA1 or BRCA2 , and multiple breast cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably, cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.
Collapse
|
7
|
Lakhani AA, Thompson SL, Sheltzer JM. Aneuploidy in human cancer: new tools and perspectives. Trends Genet 2023; 39:968-980. [PMID: 37778926 PMCID: PMC10715718 DOI: 10.1016/j.tig.2023.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Chromosome copy number imbalances, otherwise known as aneuploidies, are a common but poorly understood feature of cancer. Here, we describe recent advances in both detecting and manipulating aneuploidies that have greatly advanced our ability to study their role in tumorigenesis. In particular, new clustered regularly interspaced short palindromic repeats (CRISPR)-based techniques have been developed that allow the creation of isogenic cell lines with specific chromosomal changes, thereby facilitating experiments in genetically controlled backgrounds to uncover the consequences of aneuploidy. These approaches provide increasing evidence that aneuploidy is a key driver of cancer development and enable the identification of multiple dosage-sensitive genes encoded on aneuploid chromosomes. Consequently, measuring aneuploidy may inform clinical prognosis, while treatment strategies that target aneuploidy could represent a novel method to counter malignant growth.
Collapse
Affiliation(s)
- Asad A Lakhani
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring, Harbor, NY 11724, USA
| | | | | |
Collapse
|
8
|
Gessain G, Joyon N, Petit T, Cotteret S, Lacroix-Triki M. Uncommon invasive lobular carcinoma with papillary architecture-clinicopathologic and molecular characterization with review of the literature. Virchows Arch 2023; 483:723-729. [PMID: 36928170 DOI: 10.1007/s00428-023-03526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Breast cancer is the most common malignancy in woman, and its associated mortality is still rising worldwide. Among all the different subtypes of breast cancer, invasive lobular carcinoma (ILC) is the second most frequent. Several histological variants of ILC currently exist such as solid, alveolar, pleomorphic, tubulo-lobular, and mixed types. Recently, a new variant of ILC with a papillary growth pattern has been described. Here, we make a review of the literature and report the sixth case of a woman suffering from this very uncommon variant. Of note, she had a concomitant axillary lymph node metastasis, a manifestation not yet described so far. Molecular analysis showed CDH1 and PIK3CA mutations, along with similar quantitative chromosomal alterations in both primary and metastasis. Because ILC and papillary carcinoma are managed differently, our aim here is to raise awareness among the pathologists to avoid misdiagnosis of this unusual variant and subsequent inappropriate treatment.
Collapse
Affiliation(s)
- Grégoire Gessain
- Department of Pathology, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805, Villejuif, France
| | - Natacha Joyon
- Department of Pathology, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805, Villejuif, France.
| | - Thomas Petit
- Institut de Pathologie des Hauts-de-France, 80000, Amiens, France
| | - Sophie Cotteret
- Department of Pathology, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805, Villejuif, France
| | - Magali Lacroix-Triki
- Department of Pathology, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805, Villejuif, France
| |
Collapse
|
9
|
Nishimura T, Kakiuchi N, Yoshida K, Sakurai T, Kataoka TR, Kondoh E, Chigusa Y, Kawai M, Sawada M, Inoue T, Takeuchi Y, Maeda H, Baba S, Shiozawa Y, Saiki R, Nakagawa MM, Nannya Y, Ochi Y, Hirano T, Nakagawa T, Inagaki-Kawata Y, Aoki K, Hirata M, Nanki K, Matano M, Saito M, Suzuki E, Takada M, Kawashima M, Kawaguchi K, Chiba K, Shiraishi Y, Takita J, Miyano S, Mandai M, Sato T, Takeuchi K, Haga H, Toi M, Ogawa S. Evolutionary histories of breast cancer and related clones. Nature 2023; 620:607-614. [PMID: 37495687 PMCID: PMC10432280 DOI: 10.1038/s41586-023-06333-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1-3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.
Collapse
Affiliation(s)
- Tomomi Nishimura
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Pathology, Iwate Medical University, Iwate, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Obstetrics and Gynecology Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Yasuhide Takeuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hirona Maeda
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tomoe Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yukiko Inagaki-Kawata
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kosaku Nanki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Limited, Osaka, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Breast Surgery Department, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Department of Integrated Analytics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
10
|
Barresi V. The Crucial Findings Derived from the Special Issue "Inside Cancer Genomics: From Structure to Therapy". Cancers (Basel) 2023; 15:3488. [PMID: 37444598 DOI: 10.3390/cancers15133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer initiation, growth, and progression are sustained by multiple types of genetic alterations, ranging in size from single point mutations, focal genomic errors to broad chromosomal copy number alterations, gains, and losses [...].
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Poonia S, Goel A, Chawla S, Bhattacharya N, Rai P, Lee YF, Yap YS, West J, Bhagat AA, Tayal J, Mehta A, Ahuja G, Majumdar A, Ramalingam N, Sengupta D. Marker-free characterization of full-length transcriptomes of single live circulating tumor cells. Genome Res 2023; 33:80-95. [PMID: 36414416 PMCID: PMC9977151 DOI: 10.1101/gr.276600.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
The identification and characterization of circulating tumor cells (CTCs) are important for gaining insights into the biology of metastatic cancers, monitoring disease progression, and medical management of the disease. The limiting factor in the enrichment of purified CTC populations is their sparse availability, heterogeneity, and altered phenotypes relative to the primary tumor. Intensive research both at the technical and molecular fronts led to the development of assays that ease CTC detection and identification from peripheral blood. Most CTC detection methods based on single-cell RNA sequencing (scRNA-seq) use a mix of size selection, marker-based white blood cell (WBC) depletion, and antibodies targeting tumor-associated antigens. However, the majority of these methods either miss out on atypical CTCs or suffer from WBC contamination. We present unCTC, an R package for unbiased identification and characterization of CTCs from single-cell transcriptomic data. unCTC features many standard and novel computational and statistical modules for various analyses. These include a novel method of scRNA-seq clustering, named deep dictionary learning using k-means clustering cost (DDLK), expression-based copy number variation (CNV) inference, and combinatorial, marker-based verification of the malignant phenotypes. DDLK enables robust segregation of CTCs and WBCs in the pathway space, as opposed to the gene expression space. We validated the utility of unCTC on scRNA-seq profiles of breast CTCs from six patients, captured and profiled using an integrated ClearCell FX and Polaris workflow that works by the principles of size-based separation of CTCs and marker-based WBC depletion.
Collapse
Affiliation(s)
- Sarita Poonia
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Anurag Goel
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Computer Science and Engineering, Delhi Technological University, New Delhi 110042, India
| | - Smriti Chawla
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Namrata Bhattacharya
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Priyadarshini Rai
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Yi Fang Lee
- Biolidics Limited, Singapore 118257, Singapore
| | - Yoon Sim Yap
- National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Jay West
- Fluidigm Corporation, South San Francisco, California 94080, USA
| | | | - Juhi Tayal
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre-Delhi (RGCIRC-Delhi), New Delhi 110085, India
| | - Anurag Mehta
- Department of Laboratory Services and Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre-Delhi (RGCIRC-Delhi), New Delhi 110085, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Angshul Majumdar
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Electronics & Communications Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | | | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| |
Collapse
|
12
|
Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer. Cancers (Basel) 2022; 14:cancers14133195. [PMID: 35804965 PMCID: PMC9264946 DOI: 10.3390/cancers14133195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer remains a burden to the public health all over the world. An increasing number of studies have concentrated on the role of methyladenosine modifications on cancers. Methyladenosine modifications mainly include N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am), of which dynamic changes could modulate the metabolism of RNAs in eukaryotic cells. Mounting evidence has confirmed the crucial role of methyladenosine modification in cancer, offering possibilities for cancer therapy. In this review, we discussed the regulatory role of methyladenosine modification on cancer, as well as their potential for treatment. Abstract Methyladenosine modifications are the most abundant RNA modifications, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am). As reversible epigenetic modifications, methyladenosine modifications in eukaryotic RNAs are not invariable. Drastic alterations of m6A are found in a variety of diseases, including cancers. Dynamic changes of m6A modification induced by abnormal methyltransferase, demethylases, and readers can regulate cancer progression via interfering with the splicing, localization, translation, and stability of mRNAs. Meanwhile, m6A, m1A, and m6Am modifications also exert regulatory effects on noncoding RNAs in cancer progression. In this paper, we reviewed recent findings concerning the underlying biomechanism of methyladenosine modifications in oncogenesis and metastasis and discussed the therapeutic potential of methyladenosine modifications in cancer treatments.
Collapse
|
13
|
Luo D, Yang J, Liu J, Yong X, Wang Z. Identification of four novel hub genes as monitoring biomarkers for colorectal cancer. Hereditas 2022; 159:11. [PMID: 35093172 PMCID: PMC8801129 DOI: 10.1186/s41065-021-00216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background It must be admitted that the incidence of colorectal cancer (CRC) was on the rise all over the world, but the related treatment had not caught up. Further research on the underlying pathogenesis of CRC was conducive to improving the survival status of current CRC patients. Methods Differentially expressed genes (DEGs) screening were conducted based on “limma” and “RobustRankAggreg” package of R software. Weighted gene co-expression network analysis (WGCNA) was performed in the integrated DEGs that from The Cancer Genome Atlas (TCGA), and all samples of validation were from Gene Expression Omnlbus (GEO) dataset. Results The terms obtained in the functional annotation for primary DEGs indicated that they were associated with CRC. The MEyellow stand out whereby showed the significant correlation with clinical feature (disease), and 4 hub genes, including ABCC13, AMPD1, SCNN1B and TMIGD1, were identified in yellow module. Nine datasets from Gene Expression Omnibus database confirmed these four genes were significantly down-regulated and the survival estimates for the low-expression group of these genes were lower than for the high-expression group in Kaplan-Meier survival analysis section. MEXPRESS suggested that down-regulation of some top hub genes may be caused by hypermethylation. Receiver operating characteristic curves indicated that these genes had certain diagnostic efficacy. Moreover, tumor-infiltrating immune cells and gene set enrichment analysis for hub genes suggested that there were some associations between these genes and the pathogenesis of CRC. Conclusion This study identified modules that were significantly associated with CRC, four novel hub genes, and further analysis of these genes. This may provide a little new insights and directions into the potential pathogenesis of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00216-7.
Collapse
|