1
|
Wu HH, Leng S, Eisenstat DD, Sergi C, Leng R. Targeting p53 for immune modulation: Exploring its functions in tumor immunity and inflammation. Cancer Lett 2025; 617:217614. [PMID: 40054656 DOI: 10.1016/j.canlet.2025.217614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
p53, often referred to as the "guardian of the genome," is a critical regulator of cellular responses to stress. p53 plays a dual role in tumor suppression and immune regulation. In addition to its well-known functions of maintaining genomic stability and inducing apoptosis, p53 orchestrates a complex interaction between innate and adaptive immune responses. This involvement contributes to pathogen clearance, immune surveillance, and immunogenic cell death (ICD). This review explores the influence of p53 on immune dynamics, detailing its effects on macrophages, dendritic cells, natural killer cells (NK), T cells, and B cells. This review explains how mutations in p53 disrupt immune responses, promoting tumor immune evasion, and highlights its regulation of inflammatory cytokines and pattern recognition receptors. Furthermore, p53's role in ICD marks it as a key player in antitumor immunity, which has significant implications for cancer immunotherapy. The review also discusses the role of p53 in inflammation, autoimmune diseases, and chronic infections, revealing its dual function in promoting and suppressing inflammation through interactions with NF-κB signaling. Therapeutically, approaches that target p53, including wild-type p53 reactivation and combination therapies with immune checkpoint inhibitors, show considerable promise. Advances in high-throughput technologies, such as single-cell RNA sequencing and CRISPR screens, provide new insights into the immunological functions of p53, including its role in microbiome-immune interactions and immune senescence. This comprehensive review highlights the importance of incorporating immunological insights from p53 into innovative therapeutic strategies, addressing existing knowledge gaps, and paving the way for personalized medicine.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada; Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta, T6G 1C9, Canada; Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, Alberta, T6G 2H7, Canada; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada; Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
2
|
Cashman R, Haim-Abadi G, Lezmi E, Philip H, Nissenbaum J, Viner-Breuer R, Kozulin C, Golan-Lev T, Gadban A, Spinner-Potesky S, Yanuka O, Kopper O, Benvenisty N. Genome-Wide Screening in Haploid Stem Cells Reveals Synthetic Lethality Targeting MLH1 and TP53 Deficient Tumours. Cell Prolif 2025:e13788. [PMID: 39814695 DOI: 10.1111/cpr.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 01/18/2025] Open
Abstract
Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death, whereas each of them separately does not. Synthetic lethality can be a useful tool in personalised oncology. MLH1 is a cancer-related gene that has a central role in DNA mismatch-repair and TP53 is the most frequently mutated gene in cancer. To identify genetic events that can lead to tumour death once either MLH1 or TP53 is mutated, a genome-wide genetic screening was performed. Thus, mutations in all protein-coding genes were introduced into haploid human embryonic stem cells (hESCs) with and without loss-of-function mutations in the MLH1 or TP53 genes. These experiments uncovered a list of putative hits with EXO1, NR5A2, and PLK2 genes for MLH1, and MYH10 gene for TP53 emerging as the most promising candidates. Synthetic lethal interactions of these genes were validated genetically or chemically using small molecules that inhibit these genes. The specific effects of SR1848, which inhibits NR5A2, ON1231320 or BI2536, which inhibits PLK2, and blebbistatin, which inhibits MYH10, were further validated in cancer cell lines. Finally, animal studies with CCL xenografts showed the selective effect of the small molecule BI2536 on MLH1-null tumours and of blebbistatin on TP53-mutated tumours. Thus, demonstrating their potential for personalised medicine, and the robustness of genetic screening in haploid hESCs in the context of cancer therapeutics.
Collapse
Affiliation(s)
| | - Guy Haim-Abadi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Elyad Lezmi
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Aseel Gadban
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | - Nissim Benvenisty
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
Murcia Pienkowski V, Skoczylas P, Zaremba A, Kłęk S, Balawejder M, Biernat P, Czarnocka W, Gniewek O, Grochowalski Ł, Kamuda M, Król-Józaga B, Marczyńska-Grzelak J, Mazzocco G, Szatanek R, Widawski J, Welanyk J, Orzeszko Z, Szura M, Torbicz G, Borys M, Wohadlo Ł, Wysocki M, Karczewski M, Markowska B, Kucharczyk T, Piatek MJ, Jasiński M, Warchoł M, Kaczmarczyk J, Blum A, Sanecka-Duin A. Harnessing the power of AI in precision medicine: NGS-based therapeutic insights for colorectal cancer cohort. Front Oncol 2024; 14:1407465. [PMID: 39435285 PMCID: PMC11491396 DOI: 10.3389/fonc.2024.1407465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose Developing innovative precision and personalized cancer therapeutics is essential to enhance cancer survivability, particularly for prevalent cancer types such as colorectal cancer. This study aims to demonstrate various approaches for discovering new targets for precision therapies using artificial intelligence (AI) on a Polish cohort of colorectal cancer patients. Methods We analyzed 71 patients with histopathologically confirmed advanced resectional colorectal adenocarcinoma. Whole exome sequencing was performed on tumor and peripheral blood samples, while RNA sequencing (RNAseq) was conducted on tumor samples. We employed three approaches to identify potential targets for personalized and precision therapies. First, using our in-house neoantigen calling pipeline, ARDentify, combined with an AI-based model trained on immunopeptidomics mass spectrometry data (ARDisplay), we identified neoepitopes in the cohort. Second, based on recurrent mutations found in our patient cohort, we selected corresponding cancer cell lines and utilized knock-out gene dependency scores to identify synthetic lethality genes. Third, an AI-based model trained on cancer cell line data was employed to identify cell lines with genomic profiles similar to selected patients. Copy number variants and recurrent single nucleotide variants in these cell lines, along with gene dependency data, were used to find personalized synthetic lethality pairs. Results We identified approximately 8,700 unique neoepitopes, but none were shared by more than two patients, indicating limited potential for shared neoantigenic targets across our cohort. Additionally, we identified three synthetic lethality pairs: the well-known APC-CTNNB1 and BRAF-DUSP4 pairs, along with the recently described APC-TCF7L2 pair, which could be significant for patients with APC and BRAF variants. Furthermore, by leveraging the identification of similar cancer cell lines, we uncovered a potential gene pair, VPS4A and VPS4B, with therapeutic implications. Conclusion Our study highlights three distinct approaches for identifying potential therapeutic targets in cancer patients. Each approach yielded valuable insights into our cohort, underscoring the relevance and utility of these methodologies in the development of precision and personalized cancer therapies. Importantly, we developed a novel AI model that aligns tumors with representative cell lines using RNAseq and methylation data. This model enables us to identify cell lines closely resembling patient tumors, facilitating accurate selection of models needed for in vitro validation.
Collapse
Affiliation(s)
| | | | | | - Stanisław Kłęk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | - Joanna Welanyk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | - Zofia Orzeszko
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Mirosław Szura
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Grzegorz Torbicz
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Maciej Borys
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Łukasz Wohadlo
- Department of Oncological and General Surgery, Andrzej Frycz Modrzewski Krakow University, Cracow, Poland
| | - Michał Wysocki
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Marek Karczewski
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, University Hospital, Poznan, Poland
| | - Beata Markowska
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Kucharczyk
- Holy Cross Cancer Center Clinic of Clinical Oncology, Kielce, Poland
| | | | | | | | | | | | | |
Collapse
|
4
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
5
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
6
|
Staheli JP, Neal ML, Navare A, Mast FD, Aitchison JD. Predicting host-based, synthetic lethal antiviral targets from omics data. NAR MOLECULAR MEDICINE 2024; 1:ugad001. [PMID: 38994440 PMCID: PMC11233254 DOI: 10.1093/narmme/ugad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 07/13/2024]
Abstract
Traditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR knockout (KO) screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data revealed potential broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Arti Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| |
Collapse
|
7
|
Kodous AS, Balaiah M, Ramanathan P. Single cell RNA sequencing – a valuable tool for cancer immunotherapy: a mini review. ONCOLOGIE 2023; 25:635-639. [DOI: 10.1515/oncologie-2023-0244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has made great strides in research over the last decade. Data analysis has been aided by developments in bioinformatics tools and artificial intelligence, allowing biological and clinical researchers to get a deeper understanding of the different cell clusters and their dynamics within tumours. Combining conventional treatment modalities like chemotherapy and radiation with immunotherapy is a growing trend in cancer treatment. Hence, knowledge of the tumour microenvironment and the effect of each treatment modality on the TME, at a single cell level can provide treating clinicians with better clues for patient stratification and prognostication. With this knowledge, immunotherapy could become successful in treating a wide range of cancers, opening the path for the creation of even more effective treatment strategies. Despite the widespread availability of scRNA-seq technology, computational analysis and data interpretation are still challenges. Worldwide, such challenges are being addressed by various researchers, strengthening the contribution of this technology towards cancer elimination. In this mini-review, we primarily focus on the technique, its workflow, and the computational aspects of scRNA technology, along with an overview of the current challenges in the analysis and interpretation of the data generated.
Collapse
Affiliation(s)
- Ahmad S. Kodous
- Department of Molecular Oncology , Cancer Institute (WIA) , Chennai , Tamil Nadu , India
- Radiation Biology Department , National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Meenakumari Balaiah
- Department of Molecular Oncology , Cancer Institute (WIA) , Chennai , Tamil Nadu , India
| | - Priya Ramanathan
- Department of Molecular Oncology , Cancer Institute (WIA) , Chennai , Tamil Nadu , India
| |
Collapse
|
8
|
Kim Y, Lee HM. CRISPR-Cas System Is an Effective Tool for Identifying Drug Combinations That Provide Synergistic Therapeutic Potential in Cancers. Cells 2023; 12:2593. [PMID: 37998328 PMCID: PMC10670858 DOI: 10.3390/cells12222593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Despite numerous efforts, the therapeutic advancement for neuroblastoma and other cancer treatments is still ongoing due to multiple challenges, such as the increasing prevalence of cancers and therapy resistance development in tumors. To overcome such obstacles, drug combinations are one of the promising applications. However, identifying and implementing effective drug combinations are critical for achieving favorable treatment outcomes. Given the enormous possibilities of combinations, a rational approach is required to predict the impact of drug combinations. Thus, CRISPR-Cas-based and other approaches, such as high-throughput pharmacological and genetic screening approaches, have been used to identify possible drug combinations. In particular, the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) is a powerful tool that enables us to efficiently identify possible drug combinations that can improve treatment outcomes by reducing the total search space. In this review, we discuss the rational approaches to identifying, examining, and predicting drug combinations and their impact.
Collapse
Affiliation(s)
| | - Hyeong-Min Lee
- Department of Computational Biology, St. Jude Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
9
|
McCarthy M, Dodd WB, Lu X, Pritko DJ, Patel ND, Haskell CV, Sanabria H, Blenner MA, Birtwistle MR. Theory for High-Throughput Genetic Interaction Screening. ACS Synth Biol 2023; 12:2290-2300. [PMID: 37463472 PMCID: PMC10443530 DOI: 10.1021/acssynbio.2c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 07/20/2023]
Abstract
Systematic, genome-scale genetic screens have been instrumental for elucidating genotype-phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.
Collapse
Affiliation(s)
- Madeline
E. McCarthy
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - William B. Dodd
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Xiaoming Lu
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Daniel J. Pritko
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Nishi D. Patel
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Charlotte V. Haskell
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Hugo Sanabria
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, United States
| | - Mark A. Blenner
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marc R. Birtwistle
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
- Department
of Bioengineering, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
10
|
Erasimus H, Kolnik V, Lacroix F, Sidhu S, D'Agostino S, Lemaitre O, Rohaut A, Sanchez I, Thill G, Didier M, Debussche L, Marcireau C. Genome-wide CRISPR Screen Reveals RAB10 as a Synthetic Lethal Gene in Colorectal and Pancreatic Cancers Carrying SMAD4 Loss. CANCER RESEARCH COMMUNICATIONS 2023; 3:780-792. [PMID: 37377893 PMCID: PMC10158796 DOI: 10.1158/2767-9764.crc-22-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 06/29/2023]
Abstract
The TGFβ signaling mediator SMAD4 is frequently mutated or deleted in colorectal and pancreatic cancers. SMAD4 acts as a tumor suppressor and its loss is associated with poorer patient outcomes. The purpose of this study was to find synthetic lethal interactions with SMAD4 deficiency to find novel therapeutic strategies for the treatment of patients with SMAD4-deficient colorectal or pancreatic cancers. Using pooled lentiviral single-guide RNA libraries, we conducted genome-wide loss-of-function screens in Cas9-expressing colorectal and pancreatic cancer cells harboring altered or wild-type SMAD4. The small GTPase protein RAB10 was identified and validated as a susceptibility gene in SMAD4-altered colorectal and pancreatic cancer cells. Rescue assays showed that RAB10 reintroduction reversed the antiproliferative effects of RAB10 knockout in SMAD4-negative cell lines. Further investigation is necessary to shed light on the mechanism by which RAB10 inhibition decreases cell proliferation of SMAD4-negative cells. Significance This study identified and validated RAB10 as new synthetic lethal gene with SMAD4. This was achieved by conducting a whole-genome CRISPR screens in different colorectal and pancreatic cell lines. A future RAB10 inhibitors could correspond to a new therapeutic solution for patients with cancer with SMAD4 deletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilbert Thill
- Sanofi, Translational Sciences, Chilly-Mazarin, France
| | - Michel Didier
- Sanofi, Translational Sciences, Chilly-Mazarin, France
| | | | | |
Collapse
|
11
|
Pandey GK, Landman N, Neikes HK, Hulsman D, Lieftink C, Beijersbergen R, Kolluri KK, Janes SM, Vermeulen M, Badhai J, van Lohuizen M. Genetic screens reveal new targetable vulnerabilities in BAP1-deficient mesothelioma. Cell Rep Med 2023; 4:100915. [PMID: 36657447 PMCID: PMC9975229 DOI: 10.1016/j.xcrm.2022.100915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
More than half of patients with malignant mesothelioma show alterations in the BAP1 tumor-suppressor gene. Being a member of the Polycomb repressive deubiquitinating (PR-DUB) complex, BAP1 loss results in an altered epigenome, which may create new vulnerabilities that remain largely unknown. Here, we performed a CRISPR-Cas9 kinome screen in mesothelioma cells that identified two kinases in the mevalonate/cholesterol biosynthesis pathway. Furthermore, our analysis of chromatin, expression, and genetic perturbation data in mesothelioma cells suggests a dependency on PR complex 2 (PRC2)-mediated silencing. Pharmacological inhibition of PRC2 elevates the expression of cholesterol biosynthesis genes only in BAP1-deficient mesothelioma, thereby sensitizing these cells to the combined targeting of PRC2 and the mevalonate pathway. Finally, by subjecting autochthonous Bap1-deficient mesothelioma mice or xenografts to mevalonate pathway inhibition (zoledronic acid) and PRC2 inhibition (tazemetostat), we demonstrate a potent anti-tumor effect, suggesting a targeted combination therapy for Bap1-deficient mesothelioma.
Collapse
Affiliation(s)
- Gaurav Kumar Pandey
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Nick Landman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah K Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Krishna Kalyan Kolluri
- Lung for Living Research Centre, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Sam M Janes
- Lung for Living Research Centre, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Maranda V, Zhang Y, Vizeacoumar FS, Freywald A, Vizeacoumar FJ. A CRISPR Platform for Targeted In Vivo Screens. Methods Mol Biol 2023; 2614:397-409. [PMID: 36587138 DOI: 10.1007/978-1-0716-2914-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Large-scale genetic screens are becoming increasingly used as powerful tools to query the genome to identify therapeutic targets in cancer. The advent of the CRISPR technology has revolutionized the effectiveness of these screens and has made it possible to carry out loss-of-function screens to identify cancer-specific genetic interactions. Such loss-of-function screens can be performed in silico, in vitro, and in vivo, depending on the scale of the screen, as well as research questions to be answered. Performing screens in vivo has its challenges but also advantages, providing opportunities to study the tumor microenvironment and cancer immunity. In this chapter, we present a procedural framework and associated notes for conducting in vivo CRISPR knockout screens in cancer models to study cancer biology, anti-tumor immune responses, tumor microenvironment, and predicting treatment responses.
Collapse
Affiliation(s)
- Vincent Maranda
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Yue Zhang
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
- Cancer Research Department, Saskatchewan Cancer Agency, Saskatoon, Canada.
| |
Collapse
|
13
|
Tang S, Gökbağ B, Fan K, Shao S, Huo Y, Wu X, Cheng L, Li L. Synthetic lethal gene pairs: Experimental approaches and predictive models. Front Genet 2022; 13:961611. [PMID: 36531238 PMCID: PMC9751344 DOI: 10.3389/fgene.2022.961611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/07/2022] [Indexed: 03/27/2024] Open
Abstract
Synthetic lethality (SL) refers to a genetic interaction in which the simultaneous perturbation of two genes leads to cell or organism death, whereas viability is maintained when only one of the pair is altered. The experimental exploration of these pairs and predictive modeling in computational biology contribute to our understanding of cancer biology and the development of cancer therapies. We extensively reviewed experimental technologies, public data sources, and predictive models in the study of synthetic lethal gene pairs and herein detail biological assumptions, experimental data, statistical models, and computational schemes of various predictive models, speculate regarding their influence on individual sample- and population-based synthetic lethal interactions, discuss the pros and cons of existing SL data and models, and highlight potential research directions in SL discovery.
Collapse
Affiliation(s)
- Shan Tang
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Birkan Gökbağ
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kunjie Fan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shuai Shao
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yang Huo
- Indiana University, Bloomington, IN, United States
| | - Xue Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lijun Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Chen B, Li P, Liu M, Liu K, Zou M, Geng Y, Zhuang S, Xu H, Wang L, Chen T, Li Y, Zhao Z, Qi L, Gu Y. A genetic map of the chromatin regulators to drug response in cancer cells. J Transl Med 2022; 20:438. [PMID: 36180906 PMCID: PMC9523919 DOI: 10.1186/s12967-022-03651-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diverse drug vulnerabilities owing to the Chromatin regulators (CRs) genetic interaction across various cancers, but the identification of CRs genetic interaction remains challenging. METHODS In order to provide a global view of the CRs genetic interaction in cancer cells, we developed a method to identify potential drug response-related CRs genetic interactions for specific cancer types by integrating the screen of CRISPR-Cas9 and pharmacogenomic response datasets. RESULTS Totally, 625 drug response-related CRs synthetic lethality (CSL) interactions and 288 CRs synthetic viability (CSV) interactions were detected. Systematically network analysis presented CRs genetic interactions have biological function relationship. Furthermore, we validated CRs genetic interactions induce multiple omics deregulation in The Cancer Genome Atlas. We revealed the colon adenocarcinoma patients (COAD) with mutations of a CRs set (EP300, MSH6, NSD2 and TRRAP) mediate a better survival with low expression of MAP2 and could benefit from taxnes. While the COAD patients carrying at least one of the CSV interactions in Vorinostat CSV module confer a poor prognosis and may be resistant to Vorinostat treatment. CONCLUSIONS The CRs genetic interaction map provides a rich resource to investigate cancer-associated CRs genetic interaction and proposes a powerful strategy of biomarker discovery to guide the rational use of agents in cancer therapy.
Collapse
Affiliation(s)
- Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Pengfei Li
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Min Zou
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yiding Geng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuping Zhuang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huanhuan Xu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Linzhu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yawei Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
Pandey GK, Kanduri C. Long Non-Coding RNAs: Tools for Understanding and Targeting Cancer Pathways. Cancers (Basel) 2022; 14:cancers14194760. [PMID: 36230680 PMCID: PMC9564174 DOI: 10.3390/cancers14194760] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The regulatory nature of long non-coding RNAs (lncRNAs) has been well established in various processes of cellular growth, development, and differentiation. Therefore, it is vital to examine their contribution to cancer development. There are ample examples of lncRNAs whose cellular levels are significantly associated with clinical outcomes. However, whether these non-coding molecules can work as either key drivers or barriers to cancer development remains unknown. The current review aims to discuss some well-characterised lncRNAs in the process of oncogenesis and extrapolate the extent of their decisive contribution to tumour development. We ask if these lncRNAs can independently initiate neoplastic lesions or they always need the modulation of well characterized oncogenes or tumour suppressors to exert their functional properties. Finally, we discuss the emerging genetic approaches and appropriate animal and humanised models that can significantly contribute to the functional dissection of lncRNAs in cancer development and progression.
Collapse
Affiliation(s)
- Gaurav Kumar Pandey
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
- Correspondence: (G.K.P.); (C.K.)
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Correspondence: (G.K.P.); (C.K.)
| |
Collapse
|
16
|
Roman M, Hwang E, Sweet-Cordero EA. Synthetic Vulnerabilities in the KRAS Pathway. Cancers (Basel) 2022; 14:cancers14122837. [PMID: 35740503 PMCID: PMC9221492 DOI: 10.3390/cancers14122837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in Kristen Rat Sarcoma viral oncogene (KRAS) are among the most frequent gain-of-function genetic alterations in human cancer. Most KRAS-driven cancers depend on its sustained expression and signaling. Despite spectacular recent success in the development of inhibitors targeting specific KRAS alleles, the discovery and utilization of effective directed therapies for KRAS-mutant cancers remains a major unmet need. One potential approach is the identification of KRAS-specific synthetic lethal vulnerabilities. For example, while KRAS-driven oncogenesis requires the activation of a number of signaling pathways, it also triggers stress response pathways in cancer cells that could potentially be targeted for therapeutic benefit. This review will discuss how the latest advances in functional genomics and the development of more refined models have demonstrated the existence of molecular pathways that can be exploited to uncover synthetic lethal interactions with a promising future as potential clinical treatments in KRAS-mutant cancers.
Collapse
|
17
|
Vu V, Szewczyk MM, Nie DY, Arrowsmith CH, Barsyte-Lovejoy D. Validating Small Molecule Chemical Probes for Biological Discovery. Annu Rev Biochem 2022; 91:61-87. [PMID: 35363509 DOI: 10.1146/annurev-biochem-032620-105344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada;
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
19
|
Lin K, Shen SH, Lu F, Zheng P, Wu S, Liao J, Jiang X, Zeng G, Wei D. CRISPR screening of E3 ubiquitin ligases reveals Ring Finger Protein 185 as a novel tumor suppressor in glioblastoma repressed by promoter hypermethylation and miR-587. J Transl Med 2022; 20:96. [PMID: 35183197 PMCID: PMC8858481 DOI: 10.1186/s12967-022-03284-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor. E3 ligases play important functions in glioma pathogenesis. CRISPR system offers a powerful platform for genome manipulation, while the screen of E3 ligases in GBM still remains to be explored. Here, we first constructed an E3 ligase small guide RNA (sgRNAs) library for glioma cells growth screening. After four passages, 299 significantly enriched or lost genes (SELGs) were compared with the initial state. Then the clinical significance of SELGs were validated and analyzed with TCGA glioblastoma and CGGA datasets. As RNF185 showed lost signal, decreased expression and favorable prognostic significance, we chose RNF185 for functional analysis. In vitro overexpressed cellular phenotype showed that RNF185 was a tumor suppressor in two glioma cell lines. Finally, the molecular mechanism of decreased RNF185 expression was investigated and increased miR-587 expression and DNA hypermethylation was evaluated. This study would provide a link between the molecular basis and glioblastoma pathogenesis, and a novel perspective for glioblastoma treatment.
Collapse
|
20
|
Park H, Yamaguchi R, Imoto S, Miyano S. Uncovering Molecular Mechanisms of Drug Resistance via Network-Constrained Common Structure Identification. J Comput Biol 2022; 29:257-275. [DOI: 10.1089/cmb.2021.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
22
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|