1
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kędzierska M, Bańkosz M. Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy-A Narrative Review. J Clin Med 2024; 13:7131. [PMID: 39685591 DOI: 10.3390/jcm13237131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Modern oncology increasingly relies on the role of proteins as key components in cancer diagnosis, prognosis, and targeted therapy. This review examines advancements in protein biomarkers across several cancer types, including breast cancer, lung cancer, ovarian cancer, and hepatocellular carcinoma. These biomarkers have proven critical for early detection, treatment response monitoring, and tailoring personalized therapeutic strategies. The article highlights the utility of targeted therapies, such as tyrosine kinase inhibitors and monoclonal antibodies, in improving treatment efficacy while minimizing systemic toxicity. Despite these advancements, challenges like tumor resistance, variability in protein expression, and diagnostic heterogeneity persist, complicating universal application. The review underscores future directions, including the integration of artificial intelligence, advanced protein analysis technologies, and the development of combination therapies to overcome these barriers and refine personalized cancer treatment.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland
| | - Magdalena Bańkosz
- CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Material Engineering, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland
| |
Collapse
|
3
|
Foresi B, Shah A, Meade S, Krishnaney A. Tumor markers in non-small cell lung cancer spine metastasis: an assessment of prognosis and overall survival. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4346-4352. [PMID: 39223432 DOI: 10.1007/s00586-024-08447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The identification of gene mutations in the modern medical workup of metastatic spine tumors has become more common but has not been highly utilized in surgical planning. Potential utility of these genetic markers as surrogates for cancer behavior in current prognosis scoring systems and overall survival (OS) remains underexplored in existing literature. This study seeks to investigate the association of frequently identified tumor markers, EGFR, ALK, and PD-L1, in metastatic non-small cell lung cancer (NSCLC) to the spine with Tokuhashi prognosis scoring and OS. METHODS Patients with NSCLC metastasis to spine were identified through chart review. EGFR, ALK, and PD-L1 wild type vs. mutant type were identified from targeted chemotherapy genetic testing. Multiple linear regression was performed to assess gene profile contributions to Tokuhashi score. Cox Proportional Hazards models were generated for each tumor marker to assess the relationship between each marker and OS. RESULTS A total of 119 patients with NSCLC spine metastasis were identified. We employed a multiple linear regression analysis to investigate the influence of EGFR, ALK, and PD-L1 genotypes on the Tokuhashi score, revealing statistically significant relationships overall (p = 0.002). Individual genotype contributions include EGFR as a non-significant contributor (p = 0.269) and ALK and PD-L1 as significant contributors (p = 0.037 and p = 0.001 respectively). Overall survival was not significantly associated with tumor marker profiles through Kaplan-Meier analysis (p = 0.46) or by multivariable analysis (p = 0.108). CONCLUSION ALK and PD-L1 were significantly associated with Tokuhashi score while EGFR was not. Tumor markers alone were not predictive of OS. These findings indicate that genetic markers found in NSCLC metastases to the spine may demonstrate prognostic value. Therefore, employing standard tumor markers could enhance the identification of appropriate surgical candidates, although they demonstrate limited effectiveness in predicting overall survival.
Collapse
Affiliation(s)
- Brian Foresi
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA.
| | - Aakash Shah
- College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Seth Meade
- College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ajit Krishnaney
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Nguyen NP, Page BR, Giap H, Dahbi Z, Vinh-Hung V, Gorobets O, Mohammadianpanah M, Motta M, Portaluri M, Arenas M, Bonet M, Lara PC, Kim L, Dutheil F, Natoli E, Loganadane G, Lehrman D, Bose S, Kaur S, Blanco SC, Chi A. Immunotherapy and Radiotherapy for Older Patients with Locally Advanced Non-Metastatic Non-Small-Cell Lung Cancer Who Are Not Candidates for or Decline Surgery and Chemotherapy: A Practical Proposal by the International Geriatric Radiotherapy Group. Cancers (Basel) 2024; 16:3112. [PMID: 39272970 PMCID: PMC11394154 DOI: 10.3390/cancers16173112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The standard of care for locally advanced non-small-cell lung cancer (NSCLC) is either surgery combined with chemotherapy pre- or postoperatively or concurrent chemotherapy and radiotherapy. However, older and frail patients may not be candidates for surgery and chemotherapy due to the high mortality risk and are frequently referred to radiotherapy alone, which is better tolerated but carries a high risk of disease recurrence. Recently, immunotherapy with immune checkpoint inhibitors (ICIs) may induce a high response rate among cancer patients with positive programmed death ligand 1 (PD-L1) expression. Immunotherapy is also well tolerated among older patients. Laboratory and clinical studies have reported synergy between radiotherapy and ICI. The combination of ICI and radiotherapy may improve local control and survival for NSCLC patients who are not candidates for surgery and chemotherapy or decline these two modalities. The International Geriatric Radiotherapy Group proposes a protocol combining radiotherapy and immunotherapy based on the presence or absence of PD-L1 to optimize the survival of those patients.
Collapse
Affiliation(s)
- Nam P Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20059, USA
| | - Brandi R Page
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Huan Giap
- Radiation Oncology Proton Therapy, OSF HeathCare Cancer Institute, University of Illinois, Peoria, IL 61603, USA
| | - Zineb Dahbi
- Department of Radiation Oncology, Mohammed VI University of Health Sciences, Casablanca 82403, Morocco
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, Centre Hospitalier Public du Cotentin, 50100 Cherbourg-en-Cotentin, France
| | - Olena Gorobets
- Department of Oral Surgery, Cancer Tech Care Association, Perpignan 66000, France
| | - Mohammad Mohammadianpanah
- Colorectal Research Center, Department of Radiation Oncology, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Micaela Motta
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Maurizio Portaluri
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University Hospital, University of Rovira I Virgili, 43007 Tarragona, Spain
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, 25198 Lleida, Spain
| | - Pedro Carlos Lara
- Department of Radiation Oncology, Fernando Pessoria Canarias Las Palmas University, 35002 Las Palmas, Spain
| | - Lyndon Kim
- Division of Neuro-Oncology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Fabien Dutheil
- Department of Radiation Oncology, Clinique Sainte Clotilde, 97400 Saint Denis, France
| | - Elena Natoli
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studorium, Bologna University, 40126 Bologna, Italy
| | | | - David Lehrman
- Department of Radiation Oncology, International Geriatric Radiotherapy Group, Washington, DC 20001, USA
| | - Satya Bose
- Department of Radiation Oncology, Howard University, Washington, DC 20059, USA
| | - Sarabjot Kaur
- Department of Radiation Oncology, Howard University, Washington, DC 20059, USA
| | - Sergio Calleja Blanco
- Department of Oral Maxillofacial Surgery, Howard University, Washington, DC 20059, USA
| | - Alexander Chi
- Department of Radiation Oncology, Capital University Xuanwu Hospital, Beijing 100053, China
| |
Collapse
|
5
|
Nagasaki Y, Taki T, Nomura K, Tane K, Miyoshi T, Samejima J, Aokage K, Ohtani-Kim SJY, Kojima M, Sakashita S, Sakamoto N, Ishikawa S, Suzuki K, Tsuboi M, Ishii G. Spatial intratumor heterogeneity of programmed death-ligand 1 expression predicts poor prognosis in resected non-small cell lung cancer. J Natl Cancer Inst 2024; 116:1158-1168. [PMID: 38459590 DOI: 10.1093/jnci/djae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND We quantified the pathological spatial intratumor heterogeneity of programmed death-ligand 1 (PD-L1) expression and investigated its relevance to patient outcomes in surgically resected non-small cell lung carcinoma (NSCLC). METHODS This study enrolled 239 consecutive surgically resected NSCLC specimens of pathological stage IIA-IIIB. To characterize the spatial intratumor heterogeneity of PD-L1 expression in NSCLC tissues, we developed a mathematical model based on texture image analysis and determined the spatial heterogeneity index of PD-L1 for each tumor. The correlation between the spatial heterogeneity index of PD-L1 values and clinicopathological characteristics, including prognosis, was analyzed. Furthermore, an independent cohort of 70 cases was analyzed for model validation. RESULTS Clinicopathological analysis showed correlations between high spatial heterogeneity index of PD-L1 values and histological subtype (squamous cell carcinoma; P < .001) and vascular invasion (P = .004). Survival analysis revealed that patients with high spatial heterogeneity index of PD-L1 values presented a significantly worse recurrence-free rate than those with low spatial heterogeneity index of PD-L1 values (5-year recurrence-free survival [RFS] = 26.3% vs 47.1%, P < .005). The impact of spatial heterogeneity index of PD-L1 on cancer survival rates was verified through validation in an independent cohort. Additionally, high spatial heterogeneity index of PD-L1 values were associated with tumor recurrence in squamous cell carcinoma (5-year RFS = 29.2% vs 52.8%, P < .05) and adenocarcinoma (5-year RFS = 19.6% vs 43.0%, P < .01). Moreover, we demonstrated that a high spatial heterogeneity index of PD-L1 value was an independent risk factor for tumor recurrence. CONCLUSIONS We presented an image analysis model to quantify the spatial intratumor heterogeneity of protein expression in tumor tissues. This model demonstrated that the spatial intratumor heterogeneity of PD-L1 expression in surgically resected NSCLC predicts poor patient outcomes.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/metabolism
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/analysis
- Male
- Female
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lung Neoplasms/mortality
- Lung Neoplasms/metabolism
- Prognosis
- Middle Aged
- Aged
- Biomarkers, Tumor/metabolism
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Adult
- Carcinoma, Squamous Cell/surgery
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/metabolism
Collapse
Affiliation(s)
- Yusuke Nagasaki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Taki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Seiyu Jeong-Yoo Ohtani-Kim
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Sakashita
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shumpei Ishikawa
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| |
Collapse
|
6
|
Eichhorn F, Weigert A, Nandigama R, Klotz LV, Wilhelm J, Kriegsmann M, Allgäuer M, Muley T, Christopoulos P, Savai R, Eichhorn ME, Winter H. Prognostic Impact of the Immune-Cell Infiltrate in N1-Positive Non-Small-Cell Lung Cancer. Clin Lung Cancer 2023; 24:706-716.e1. [PMID: 37460340 DOI: 10.1016/j.cllc.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION The tumoral immune milieu plays a crucial role for the development of non-small-cell lung cancer (NSCLC) and may influence individual prognosis. We analyzed the predictive role of immune cell infiltrates after curative lung cancer surgery. MATERIALS AND METHODS The tumoral immune-cell infiltrate from 174 patients with pN1 NSCLC and adjuvant chemotherapy was characterized using immunofluorescence staining. The density and distribution of specific immune cells in tumor center (TU), invasive front (IF) and normal tissue (NORM) were correlated with clinical parameters and survival data. RESULTS Tumor specific survival (TSS) of all patients was 69.9% at 5 years. The density of tumor infiltrating lymphocytes (TIL) was higher in TU and IF than in NORM. High TIL density in TU (low vs. high: 62.0% vs. 86.7%; p = .011) and the presence of cytotoxic T-Lymphocytes (CTLs) in TU and IF were associated with improved TSS (positive vs. negative: 90.6% vs. 64.7% p = .024). High TIL-density correlated with programmed death-ligand 1 expression levels ≥50% (p < .001). Multivariate analysis identified accumulation of TIL (p = .016) and low Treg density (p = .003) in TU as negative prognostic predictors in squamous cell carcinoma (p = .025), whereas M1-like tumor- associated macrophages (p = .019) and high programmed death-ligand 1 status (p = .038) were associated with better survival in adenocarcinoma. CONCLUSION The assessment of specific intratumoral immune cells may serve as a prognostic predictor in pN1 NSCLC. However differences were observed related to adenocarcinoma or squamous cell carcinoma histology. Prospective assessment of the immune-cell infiltrate and further clarification of its prognostic relevance could assist patient selection for upcoming perioperative immunotherapies.
Collapse
Affiliation(s)
- Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany.
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Rajender Nandigama
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Laura V Klotz
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Mark Kriegsmann
- Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology Wiesbaden, Wiesbaden, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany; Section Translational Research (STF), Thoraxklinik, Heidelberg University, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany; Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Rajkumar Savai
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany; Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Martin E Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
7
|
Samejima H, Kojima K, Fujiwara A, Tokunaga T, Okishio K, Yoon H. The combination of PD-L1 expression and the neutrophil-to-lymphocyte ratio as a prognostic factor of postoperative recurrence in non-small-cell lung cancer: a retrospective cohort study. BMC Cancer 2023; 23:1107. [PMID: 37964220 PMCID: PMC10644552 DOI: 10.1186/s12885-023-11604-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND While PD-L1 expression and neutrophil-to-lymphocyte ratio (NLR) are prognostic biomarkers for lung cancer, few studies have considered their interaction. We hypothesized that the product of PD-L1 expression (tumor proportion score) and the NLR (PD-L1 × NLR) might be a postoperative prognostic marker reflecting the immune microenvironment of lung cancer. METHODS We analyzed the association between PD-L1 × NLR and postoperative recurrence-free survival in 647 patients with NSCLC using multivariable Cox proportional hazards models. RESULTS In the analysis of PD-L1 × NLR as a categorical variable, the group with PD-L1 × NLR ≥ 25.8 had a significantly higher hazard ratio (HR) than the group with < 25.8 (adjusted HR 1.78, 95% confidence interval [CI] 1.23-2.60). The adjusted HR for PD-L1 × NLR, considered a continuous variable, was 1.004 (95% CI, 1.002-1.006). The risk of postoperative recurrence increased by 1.004-fold for each unit increase in PD-L1 × NLR, and a more than 2-fold increase in risk was observed for values ≥ 170. CONCLUSIONS PD-L1 × NLR may be used in real-world clinical practice as a novel factor for predicting the risk of postoperative recurrence after lung cancer surgery.
Collapse
Affiliation(s)
- Hironobu Samejima
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| | - Kensuke Kojima
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan.
| | - Ayako Fujiwara
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| | - Toshiteru Tokunaga
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| | - Kyoichi Okishio
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
- Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Hyungeun Yoon
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| |
Collapse
|
8
|
Kuusisalo S, Tikkanen A, Lappi‐Blanco E, Väisänen T, Knuuttila A, Tiainen S, Ahvonen J, Iivanainen S, Koivunen JP. The prognostic and predictive roles of plasma C-reactive protein and PD-L1 in non-small cell lung cancer. Cancer Med 2023; 12:16087-16097. [PMID: 37329173 PMCID: PMC10469721 DOI: 10.1002/cam4.6262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Anti-PD-(L)1 agents have revolutionized the treatment paradigms of non-small cell lung cancer (NSCLC), while predictive biomarkers are limited. It has been previously shown that systemic inflammation, indicated by elevated C-reactive protein (CRP) level, is associated with a poor prognosis in anti-PD-(L)1 treated. The aim of the study was to analyze the prognostic and predictive value of CRP in addition to traditional prognostic and predictive markers and tumor PD-L1 score. METHODS We identified all NSCLC patients (n = 329) who had undergone PD-L1 tumor proportion score (TPS) analysis at Oulu University Hospital 2015-22. CRP levels, treatment history, immune checkpoint inhibitor (ICI) therapy details, and survival were collected. The patients were categorized based on CRP levels (≤10 vs. >10) and PD-L1 TPS scores (<50 vs. ≥50). RESULTS In the whole cohort (n = 329), CRP level of ≤10 mg/L was associated with improved survival in univariate (HR 0.30, Cl 95% 0.22-0.41) and multivariate analyzes (HR 0.44, CI 95% 0.28-0.68). With ICI treated (n = 70), both CRP of ≤10 and PD-L1 TPS of ≥50 were associated with improved progression-free survival (PFS) in univariate (HR 0.51, CI 95% 0.27-0.96; HR 0.54, CI 95% 0.28-1.02) and multivariate (HR 0.48, CI 95% 0.26-0.90; HR 0.50, CI 95% 0.26-0.95) analyzes. The combination (PD-L1 TPS ≥50 and CRP >10) carried a high negative predictive value with a median PFS of 4.11 months (CI 95% 0.00-9.63), which was similar to patients with low PD-L1 (4.11 months, CI 95% 2.61-5.60). CONCLUSIONS Adding plasma CRP levels to PD-L1 TPS significantly increased the predictive value of sole PD-L1. Furthermore, patients with high CRP beard little benefit from anti-PD-(L)1 therapies independent of PD-L1 score. The study highlights the combined evaluation of plasma CRP and PD-L1 TPS as a negative predictive marker for ICI therapies.
Collapse
Affiliation(s)
- Saara Kuusisalo
- Department of Medical Oncology and Radiotherapy and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Antti Tikkanen
- Department of Medical Oncology and Radiotherapy and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Elisa Lappi‐Blanco
- Department of Pathology, Oulu University Hospital and Department of Pathology, Cancer and Translational Medicine Research UnitUniversity of OuluOuluFinland
| | - Timo Väisänen
- Department of Pathology, Oulu University Hospital and Department of Pathology, Cancer and Translational Medicine Research UnitUniversity of OuluOuluFinland
| | - Aija Knuuttila
- Department of Pulmonary Medicine, Heart and Lung Center and Cancer CenterHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Satu Tiainen
- Cancer CenterKuopio University HospitalKuopioFinland
| | - Jarkko Ahvonen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Department of OncologyTampere University HospitalTampereFinland
| | - Sanna Iivanainen
- Department of Medical Oncology and Radiotherapy and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Jussi P. Koivunen
- Department of Medical Oncology and Radiotherapy and Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| |
Collapse
|
9
|
Motono N, Mizoguchi T, Ishikawa M, Iwai S, Iijima Y, Uramoto H. PD-L1 Expression is not a Predictive Factor for Recurrence in Resected Non-small Cell Lung Cancer. Lung 2023; 201:95-101. [PMID: 36583762 DOI: 10.1007/s00408-022-00593-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Although targeting programmed death-1 (PD-1) and its ligand, programmed death-ligand 1 (PD-L1), is an established treatment modality for non-small cell lung cancer (NSCLC), the prognostic relevance of PD-L1 expression in NSCLC patients who undergo pulmonary resection is controversial. METHODS Two hundred thirty-seven NSCLC patients who underwent pulmonary resection were enrolled and the relationship between PD-L1 and various clinicopathological factors, as well as the prognostic relevance of PD-L1, was evaluated. RESULTS PD-L1 expression was significantly higher in male patients (p < 0.01), lymphatic invasion (p < 0.01), vascular invasion (p < 0.01), grade 3-4 differentiation (p < 0.01), squamous cell carcinoma (p < 0.01), and pathological stage > II (p < 0.01), but significantly lower in those who were epithelial growth factor receptor (EGFR) mutation negative (p < 0.01). Relapse-free survival was significantly worse in patients with PD-L1 expression (p = 0.04). Univariate analysis showed that male sex (p = 0.04), carcinoembryonic antigen expression (CEA) (p < 0.01), maximum standardized uptake value (p < 0.01), lymphatic invasion (p < 0.01), vascular invasion (p < 0.01), grade 3-4 differentiation (p < 0.01), lower lobe disease (p = 0.04), PD-L1 expression (p = 0.03), and pathological stage (p < 0.01) were significant risk factors of recurrence. In multivariate analysis, CEA expression (p = 0.01), lymphatic invasion (p = 0.04), and pathological stage (p < 0.01) were risk factors for recurrence, whereas PD-L1 expression was not a significant factor of recurrence (p = 0.62). CONCLUSION PD-L1 expression was not a risk factor of recurrence but tumor progression tended to increase PD-L1 expression. TRIAL REGISTRATION The Institutional Review Board of Kanazawa Medical University approved the protocol of this retrospective study (approval number: I392), and written informed consent was obtained from all patients.
Collapse
Affiliation(s)
- Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Takaki Mizoguchi
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Masahito Ishikawa
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
10
|
Stereotactic Body Radiotherapy and Immunotherapy for Older Patients with Oligometastases: A Proposed Paradigm by the International Geriatric Radiotherapy Group. Cancers (Basel) 2022; 15:cancers15010244. [PMID: 36612239 PMCID: PMC9818761 DOI: 10.3390/cancers15010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The standard of care for metastatic disease is systemic therapy. A unique subset of patients with limited metastatic disease defined as distant involvement of five anatomic sites or less (oligometastases) have a better chance of remission or improved survival and may benefit from local treatments such as surgery or stereotactic body radiotherapy (SBRT). However, to prevent further spread of disease, systemic treatment such as chemotherapy, targeted therapy, and hormonal therapy may be required. Older patients (70 years old or above) or physiologically frail younger patients with multiple co-morbidities may not be able to tolerate the conventional chemotherapy due to its toxicity. In addition, those with a good performance status may not receive optimal chemotherapy due to concern about toxicity. Recently, immunotherapy with checkpoint inhibitors (CPI) has become a promising approach only in the management of program death ligand 1 (PD-L1)-positive tumors. Thus, a treatment method that elicits induction of PD-L1 production by tumor cells may allow all patients with oligometastases to benefit from immunotherapy. In vitro studies have demonstrated that high dose of radiotherapy may induce formation of PD-L1 in various tumors as a defense mechanism against inflammatory T cells. Clinical studies also corroborated those observations. Thus, SBRT, with its high precision to minimize damage to normal organs, may be a potential treatment of choice for older patients with oligometastases due to its synergy with immunotherapy. We propose a protocol combining SBRT to achieve a minimum radiobiologic equivalent dose around 59.5 Gy to all tumor sites if feasible, followed four to six weeks later by CPI for those cancer patients with oligometastases. All patients will be screened with frailty screening questionnaires to identify individuals at high risk for toxicity. The patients will be managed with an interdisciplinary team which includes oncologists, geriatricians, nurses, nutritionists, patient navigators, and social workers to manage all aspects of geriatric patient care. The use of telemedicine by the team may facilitate patient monitoring during treatment and follow-up. Preliminary data on toxicity, local control, survival, and progression-free survival may be obtained and serve as a template for future prospective studies.
Collapse
|
11
|
Deng Q, Wang H, Xiu W, Tian X, Gong Y. Uncertain resection of highest mediastinal lymph node positive among pN2 non-small cell lung cancer patients: survival analysis of postoperative radiotherapy and driver gene mutations. Jpn J Radiol 2022; 41:551-560. [PMID: 36484979 DOI: 10.1007/s11604-022-01372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE The role of postoperative radiotherapy (PORT) in uncertain resection of pN2 non-small cell lung cancer (NSCLC) with highest mediastinal lymph node positive has not been determined. We aim to evaluate the effect of PORT and driver gene mutation status (DGMS) on survival in such patients. METHODS 140 selected patients were grouped according to whether they received PORT and their DGMS. Locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival (OS) of each group were evaluated by Kaplan-Meier analyses. COX regression was used to evaluate the effects of various factors on DFS and OS. RESULTS Of 140 patients, thirty-four patients (24.3%) received PORT, and forty (28.6%) had positive driver gene mutation status (DGp). PORT significantly prolonged LRFS (p = 0.002), DFS (p = 0.019) and OS (p = 0.02), but not DMFS (p = 0.062). By subgroup analysis, in patients with negative driver gene mutation status (DGn), those receiving PORT had notably longer LRFS (p = 0.022) and DFS (p = 0.033), but not DMFS (p = 0.060) or OS (p = 0.215), compared to those not receiving PORT. Cox analysis showed that the number of positive lymph nodes (PLNs) and administration of PORT were independent prognostic factors of DFS, and pathology, PLNs, and DGMS may be prognostic factors of OS (all p < 0.05). CONCLUSION Postoperative radiotherapy may improve locoregional recurrence-free and disease-free survival in patients with pN2 NSCLC with positive highest mediastinal lymph nodes, while driver gene mutation status impacted OS significantly. Only patients with positive driver gene mutations experienced significant overall survival benefits from postoperative radiotherapy.
Collapse
|
12
|
Nakahama K, Osawa M, Izumi M, Yoshimoto N, Sugimoto A, Nagamine H, Ogawa K, Matsumoto Y, Sawa K, Tani Y, Kaneda H, Mitsuoka S, Watanabe T, Asai K, Kawaguchi T. SP142 evaluation contributes to the prediction of immune checkpoint inhibitor efficacy in non-small cell lung cancer with high PD-L1 expression assessed by 22C3. Transl Lung Cancer Res 2022; 11:2438-2451. [PMID: 36636414 PMCID: PMC9830255 DOI: 10.21037/tlcr-22-496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022]
Abstract
Background It remains unclear whether assessing programmed death-ligand 1 (PD-L1) expression by SP142 plus 22C3 adds value for predicting the response to immunotherapy in non-small cell lung cancer (NSCLC). Methods This retrospective multicenter study included patients with advanced NSCLC treated with immune-checkpoint inhibitors. We constructed tissue microarrays (TMAs) and performed immunohistochemical staining with 22C3 and SP142 assays. We denoted the PD-L1 tumor proportion score (TPS) obtained from clinical medical records based on 22C3 staining as "22C3 (C)" and that obtained with 22C3 staining using our TMA as "22C3 (TMA)". SP142 staining was evaluated in both tumor cells and immune cells. We assessed the concordance between each PD-L1 assessment method and analyzed the objective response rate (ORR), progression-free survival (PFS) and overall survival (OS) based on the PD-L1 expression level determined using the 22C3 and SP142 assays. Results In total, 288 patients were included. Among those with 22C3 (TMA) ≥50%, 60% of patients showed SP142 TC3 or IC3; among patients with 22C3 (C) <1%, 9% and 18% exhibited 22C3 (TMA) ≥1% and SP142 TC1/2/3 or IC1/2/3, respectively. Among patients with 22C3 (C) ≥50% treated with immune-checkpoint inhibitor monotherapy, the SP142 TC1/2/3 or IC1/2/3 group showed significantly better ORR, PFS and OS than the SP142 TC0 and IC0 group (54% vs. 29%, P=0.040, median =11.0 vs. 3.2 months, P=0.002, median =27.9 vs. 12.6 months, P=0.030, respectively). Multivariate analysis revealed that SP142 TC0 and IC0 was an independent unfavorable prognostic factor for PFS and OS in patients with 22C3 (C) ≥50% treated with immune-checkpoint inhibitor monotherapy. For those with 22C3 (C) ≥50% and SP142 TC0 and IC0, immune-checkpoint inhibitor concurrent with chemotherapy tended to result in a longer PFS and OS than immune-checkpoint inhibitor monotherapy (median =13.7 vs. 2.3 months, P=0.054, median = not estimable vs. 12.0 months, P=0.064, respectively). Conclusions SP142 evaluation contributes to the prediction of immune-checkpoint inhibitor efficacy in NSCLC with high PD-L1 expression assessed by 22C3.
Collapse
Affiliation(s)
- Kenji Nakahama
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masahiko Osawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Motohiro Izumi
- Department of Pulmonary Medicine, Bell land General Hospital, Sakai, Japan
| | - Naoki Yoshimoto
- Department of Pulmonary Medicine, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Akira Sugimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroaki Nagamine
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koichi Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoko Tani
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan;,Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
13
|
Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, Grimminger F, Savai R. Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Front Immunol 2022; 13:903562. [PMID: 35720364 PMCID: PMC9201083 DOI: 10.3389/fimmu.2022.903562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The present treatments for lung cancer include surgical resection, radiation, chemotherapy, targeted therapy, and immunotherapy. Despite advances in therapies, the prognosis of lung cancer has not been substantially improved in recent years. Chimeric antigen receptor (CAR)-T cell immunotherapy has attracted growing interest in the treatment of various malignancies. Despite CAR-T cell therapy emerging as a novel potential therapeutic option with promising results in refractory and relapsed leukemia, many challenges limit its therapeutic efficacy in solid tumors including lung cancer. In this landscape, studies have identified several obstacles to the effective use of CAR-T cell therapy including antigen heterogeneity, the immunosuppressive tumor microenvironment, and tumor penetration by CAR-T cells. Here, we review CAR-T cell design; present the results of CAR-T cell therapies in preclinical and clinical studies in lung cancer; describe existing challenges and toxicities; and discuss strategies to improve therapeutic efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Prameela Kandra
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) Institute of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Visakhapatnam, India
| | - Rajender Nandigama
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Bastian Eul
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Member of the Deutsches Zentrum für Lungenforschung (DZL), University Hospital Munich, Munich, Germany.,German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Munich, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Li Z, Sun G, Sun G, Cheng Y, Wu L, Wang Q, Lv C, Zhou Y, Xia Y, Tang W. Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Front Oncol 2021; 11:771335. [PMID: 34869005 PMCID: PMC8635629 DOI: 10.3389/fonc.2021.771335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The occurrence and development of cancer are closely related to the immune escape of tumor cells and immune tolerance. Unlike previous surgical, chemotherapy, radiotherapy and targeted therapy, tumor immunotherapy is a therapeutic strategy that uses various means to stimulate and enhance the immune function of the body, and ultimately achieves the goal of controlling tumor cells.With the in-depth understanding of tumor immune escape mechanism and tumor microenvironment, and the in-depth study of tumor immunotherapy, immune checkpoint inhibitors represented by Programmed Death 1/Programmed cell Death-Ligand 1(PD-1/PD-L1) inhibitors are becoming increasingly significant in cancer medication treatment. employ a variety of ways to avoid detection by the immune system, a single strategy is not more effective in overcoming tumor immune evasion and metastasis. Combining different immune agents or other drugs can effectively address situations where immunotherapy is not efficacious, thereby increasing the chances of success and alternative access to alternative immunotherapy. Immune combination therapies for cancer have become a hot topic in cancer treatment today. In this paper, several combination therapeutic modalities of PD1/PD-L1 inhibitors are systematically reviewed. Finally, an analysis and outlook are provided in the context of the recent advances in combination therapy with PD1/PD-L1 inhibitors and the pressing issues in this field.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yichan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Qiu B, Cai K, Chen C, Chen J, Chen KN, Chen QX, Cheng C, Dai TY, Fan J, Fan Z, Hu J, Hu WD, Huang YC, Jiang GN, Jiang J, Jiang T, Jiao WJ, Li HC, Li Q, Liao YD, Liu HX, Liu JF, Liu L, Liu Y, Long H, Luo QQ, Ma HT, Mao NQ, Pan XJ, Tan F, Tan LJ, Tian H, Wang D, Wang WX, Wei L, Wu N, Wu QC, Xiang J, Xu SD, Yang L, Zhang H, Zhang L, Zhang P, Zhang Y, Zhang Z, Zhu K, Zhu Y, Um SW, Oh IJ, Tomita Y, Watanabe S, Nakada T, Seki N, Hida T, Sasada S, Uchino J, Sugimura H, Dermime S, Cappuzzo F, Rizzo S, Cho WCS, Crucitti P, Longo F, Lee KY, De Ruysscher D, Vanneste BGL, Furqan M, Sieren JC, Yendamuri S, Merrell KW, Molina JR, Metro G, Califano R, Bongiolatti S, Provencio M, Hofman P, Gao S, He J. Expert consensus on perioperative immunotherapy for local advanced non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3713-3736. [PMID: 34733623 PMCID: PMC8512472 DOI: 10.21037/tlcr-21-634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/18/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Bin Qiu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke-Neng Chen
- Department of Thoracic Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qi-Xun Chen
- Department of Thoracic Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Science, Hangzhou, China
| | - Chao Cheng
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian-Yang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junqiang Fan
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zhaohui Fan
- Department of Thoracic Surgery, Jiangsu Cancer Hospital (Nanjing Medical University Affiliated Cancer Hospital) and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Ge-Ning Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen-Jie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - He-Cheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong-De Liao
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qing-Quan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Tao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nai-Quan Mao
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Guangxi Medical University, Nanning, China
| | - Xiao-Jie Pan
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Jie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wang
- Department of Cardiothoracic Surgery, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen-Xiang Wang
- Department of Thoracic Surgery II, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Li Wei
- Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqing Xiang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shi-Dong Xu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lanjun Zhang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Kunshou Zhu
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Korea
| | - Yusuke Tomita
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeo Nakada
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toyoaki Hida
- Lung Cancer Center, Central Japan International Medical Center, Gifu, Japan
| | - Shinji Sasada
- Department of Respiratory Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Said Dermime
- Department of Medical Oncology and Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Federico Cappuzzo
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefania Rizzo
- Imaging Institute of the Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Università della Svizzera Italiana, Lugano, Switzerland
| | | | | | - Filippo Longo
- Department of Thoracic Surgery, University Campus Bio-Medico, Rome, Italy
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea
| | - Dirk De Ruysscher
- Department of Radiation Oncology, MAASTRO Clinic, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ben G L Vanneste
- Department of Radiation Oncology, MAASTRO Clinic, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Muhammad Furqan
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica C Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Julian R Molina
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust and Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | | | - Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, BB-0033-00025, CHU Nice, Université Côte d'Azur, Nice, France
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|