1
|
Ge Y, Janson V, Dong Z, Liu H. Role and mechanism of IL-33 in bacteria infection related gastric cancer continuum: From inflammation to tumor progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189296. [PMID: 40058506 DOI: 10.1016/j.bbcan.2025.189296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Gastric cancer, a globally prevalent malignant tumor, is characterized by low early diagnosis rate, high metastasis rate, and poor prognosis, particularly in East Asia, Eastern Europe, and South America. Helicobacter pylori (H. pylori) is recognized as the primary risk factor for gastric cancer. However, the fact that fewer than 3 % of infected individuals develop cancer suggests that other bacteria may also influence gastric carcinogenesis. A diverse community of microorganisms may interact with H. pylori, thereby driving disease progression. Here, the role of the cytokine IL-33, a member of the IL-1 family, is scrutinized. Its production can be induced by H. pylori through the activation of specific signaling pathways, and it contributes to the inflammatory environment by promoting the release of pro-inflammatory cytokines. This article reviews the conflicting evidence regarding IL-33's role in the progression from gastritis to gastric cancer and discusses the potential therapeutic implications of targeting the IL-33/ST2 axis, with various antibodies and inhibitors in development or undergoing clinical trials for inflammatory diseases. However, the role of IL-33 in gastric cancer treatment remains to be fully elucidated, with its effects potentially dependent on the cellular context and stage of cancer progression. In summary, this review provides a comprehensive overview of the intricate relationship between gastric microbiota, IL-33, and gastritis - gastric cancer transition, offering insights into potential therapeutic targets and the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yunxiao Ge
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| |
Collapse
|
2
|
Kowitt C, Zhang Q. Interleukin-33 and Obesity-Related Inflammation and Cancer. ENCYCLOPEDIA 2024; 4:1770-1789. [PMID: 40236667 PMCID: PMC11999627 DOI: 10.3390/encyclopedia4040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Interleukin-33 (IL-33) is a cytokine belonging to the IL-1 family. It is primarily associated with type 2 immune responses. It interacts with a receptor complex on immune cells in reaction to tissue damage or cellular injury. IL-33 is crucial in immune responses and is involved in various autoimmune and inflammatory diseases. Obesity is marked by chronic inflammation and is a known risk factor for several types of cancer. Recent studies have shown that IL-33 and its receptor complex are expressed in adipose (fat) tissue, suggesting they may play a role in obesity. While inflammation connects obesity and cancer, it is not yet clear whether IL-33 contributes to cancer associated with obesity. Depending on the cellular context, inflammatory environment, expression levels, and bioactivity, IL-33 can exhibit both protumorigenic and antitumorigenic effects. This review will explore the various functions of IL-33 in the inflammation linked to obesity and its relationship with cancer.
Collapse
Affiliation(s)
- Cameron Kowitt
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Che K, Li J, Chen Z, Li Q, Wen Q, Wang C, Yang Z. IL-33 in cancer immunotherapy: Pleiotropic functions and biological strategies. Cytokine Growth Factor Rev 2024:S1359-6101(24)00093-5. [PMID: 39638672 DOI: 10.1016/j.cytogfr.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Interleukin-33 (IL-33) belongs to the IL-1 cytokine superfamily and plays a critical role in regulating immune responses and maintaining host homeostasis. IL-33 is essential for driving and enhancing type 2 immune responses and is closely associated with the pathogenesis of various inflammatory diseases, infections, and the progression and metastasis of cancers. This study aimed to provide an overview of the anti-tumor effects of IL-33 by examining its complex immunomodulatory functions within the tumor microenvironment and how it regulates immune cells to mediate these effects. We also provided perspectives on the pleiotropic roles of IL-33 in immunomodulation, its potential use in cancer immunotherapies, and possible adverse effects associated with its therapeutic application. Understanding these mechanisms is crucial for developing more effective IL-33-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Keying Che
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinyu Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zheng Chen
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chuanxi Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Lin X, Li Y, Qi B, Zhang S, Li X. Casein-phosphatidylcholine emulsifier remodels LPS-induced intestinal barrier disfunction via regulating ferroptosis and lipid metabolism. Int J Biol Macromol 2024; 254:127595. [PMID: 37884232 DOI: 10.1016/j.ijbiomac.2023.127595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Recently, the biosafety of synthetic emulsifier in intestinal barrier has raised significant concerns. Casein- phosphatidylcholine (CP), which is a natural emulsifier, has better emulsification and stability. However, the effect of CP on intestinal barrier remains unknow. Intestinal permeability and lipomics analysis showed that carboxymethyl cellulose (CMC) and CP have no significant effect on intestinal barrier in normal intestinal barrier model, whereas CP increased transmembrane resistance value and remodeled lipid homeostasis in LPS induced intestinal barrier dysfunction model, indicating its superior biosafety. To explore the underlying molecular mechanism of emulsifier on intestinal barrier dysfunction, the bioinformatics analysis of six original microarray datasets including 168 cases in NCBI-Gene Expression Omnibus database showed ferroptosis-related genes showed a significant differential expression. The quantitative polymerase chain reaction analysis demonstrated that CP can repair the imbalance of lipid homeostasis induced by LPS and restore normal intestinal permeability by regulating the expression of ferroptosis-related genes, while CMC could can enhance intestinal permeability by inducing ferroptosis of intestinal epithelial cells through lipid peroxidation. In conclusion, this study highlighted CP could remodel LPS-induced intestinal barrier disfunction via regulating ferroptosis and lipid metabolism. These findings can be used as a new insight for the design of new healthy emulsifier.
Collapse
Affiliation(s)
- Xiujun Lin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Stojanovic B, Gajovic N, Jurisevic M, Stojanovic MD, Jovanovic M, Jovanovic I, Stojanovic BS, Milosevic B. Decoding the IL-33/ST2 Axis: Its Impact on the Immune Landscape of Breast Cancer. Int J Mol Sci 2023; 24:14026. [PMID: 37762328 PMCID: PMC10531367 DOI: 10.3390/ijms241814026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin-33 (IL-33) has emerged as a critical cytokine in the regulation of the immune system, showing a pivotal role in the pathogenesis of various diseases including cancer. This review emphasizes the role of the IL-33/ST2 axis in breast cancer biology, its contribution to cancer progression and metastasis, its influence on the tumor microenvironment and cancer metabolism, and its potential as a therapeutic target. The IL-33/ST2 axis has been shown to have extensive pro-tumorigenic features in breast cancer, starting from tumor tissue proliferation and differentiation to modulating both cancer cells and anti-tumor immune response. It has also been linked to the resistance of cancer cells to conventional therapeutics. However, the role of IL-33 in cancer therapy remains controversial due to the conflicting effects of IL-33 in tumorigenesis and anti-tumor response. The possibility of targeting the IL-33/ST2 axis in tumor immunotherapy, or as an adjuvant in immune checkpoint blockade therapy, is discussed.
Collapse
Affiliation(s)
- Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Milena Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Otorinolaringology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| |
Collapse
|
6
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Liu J, Zhang W, Cai W, Chen Y, Cai X, Tang D, Tang M, Dai Y. Multi-Omics Analyses Revealed GOLT1B as a Potential Prognostic Gene in Breast Cancer Probably Regulating the Immune Microenvironment. Front Oncol 2022; 11:805273. [PMID: 35127514 PMCID: PMC8815109 DOI: 10.3389/fonc.2021.805273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
As recently reported by The International Agency for Research on Cancer (IARC), breast cancer has the highest incidence of all cancers in 2020. Many studies have revealed that golgi apparatus is closely associated with the development of breast cancer. However, the role of golgi apparatus in immune microenvironment is still not clear. In this study, using RNA-Seq datasets of breast cancer patients from the public database (n = 1080), we revealed that GOLT1B, encoding a golgi vesicle transporter protein, was significantly higher expressed in human breast cancer tissues versus normal tissues. Besides, we verified GOLT1B expression in five breast cancer cell line using our original data and found GOLT1B was significantly up-regulated in MDA-MB-231, MCF-7, SKBR3. Subsequently, we identified GOLT1B as a potential independent prognostic factor for breast cancer. After a multi-omics analysis, we uncovered that the higher expression of GOLT1B in breast cancer tissues versus normal tissues might be due to the amplification of GOLT1B and altered phosphorylation of its potential transcriptional factors, including JUN and SIN3A. Subsequently, we discovered that GOLT1B potentially regulated the immune microenvironment basing on the finding that its expression was closely related to the tumor microenvironment score and infiltration of immune cells. Moreover, we revealed that GOLT1B might affect the overall survival rates of breast cancer through regulating the immune cell infiltration. Finally, we disclosed the potential pathways involved in the functions of GOLT1B in breast cancer, including metabolism and ECM-receptor interaction pathways. To sum up, we identified GOLT1B as a potential prognostic gene for breast cancer and disclosed its role in regulating the immune microenvironment.
Collapse
Affiliation(s)
- Junping Liu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yumei Chen
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaozhong Cai
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| | - Min Tang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| |
Collapse
|