1
|
Kuhn E, Natacci F, Corbo M, Pisani L, Ferrero S, Bulfamante G, Gambini D. The Contribution of Oxidative Stress to NF1-Altered Tumors. Antioxidants (Basel) 2023; 12:1557. [PMID: 37627552 PMCID: PMC10451967 DOI: 10.3390/antiox12081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The neurofibromatosis-1 gene (NF1) was initially characterized because its germline mutation is responsible for an inherited syndromic disease predisposing tumor development, in particular neurofibromas but also various malignancies. Recently, large-scale tumor sequencing efforts have demonstrated NF1 as one of the most frequently mutated genes in human cancer, being mutated in approximately 5-10% of all tumors, especially in malignant peripheral nerve sheath tumors and different skin tumors. NF1 acts as a tumor suppressor gene that encodes neurofibromin, a large protein that controls neoplastic transformation through several molecular mechanisms. On the other hand, neurofibromin loss due to NF1 biallelic inactivation induces tumorigenic hyperactivation of Ras and mTOR signaling pathways. Moreover, neurofibromin controls actin cytoskeleton structure and the metaphase-anaphase transition. Consequently, neurofibromin deficiency favors cell mobility and proliferation as well as chromosomal instability and aneuploidy, respectively. Growing evidence supports the role of oxidative stress in NF1-related tumorigenesis. Neurofibromin loss induces oxidative stress both directly and through Ras and mTOR signaling activation. Notably, innovative therapeutic approaches explore drug combinations that further increase reactive oxygen species to boost the oxidative unbalance of NF1-altered cancer cells. In our paper, we review NF1-related tumors and their pathogenesis, highlighting the twofold contribution of oxidative stress, both tumorigenic and therapeutic.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| |
Collapse
|
2
|
Ortiz-Rivera J, Nuñez R, Kucheryavykh Y, Kucheryavykh L. The PYK2 inhibitor PF-562271 enhances the effect of temozolomide on tumor growth in a C57Bl/6-Gl261 mouse glioma model. J Neurooncol 2023; 161:593-604. [PMID: 36790653 PMCID: PMC9992029 DOI: 10.1007/s11060-023-04260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The development of resistance to temozolomide (TMZ), a standard chemotherapeutic, limits the effective treatment of glioblastoma (GBM). Focal adhesion kinase (FAK) and proline rich tyrosine kinase 2 (Pyk2) regulate proliferation and invasion of GBM cells. We found that TMZ activates FAK and Pyk2 signaling in GBM. We hypothesized that pharmacological inhibitors of Pyk2/FAK together with TMZ can enhance the inhibitory effect of TMZ on tumor growth and dispersal and improve the treatment outcome. METHODS Primary human GBM cell cultures and a C57Bl/6-GL261 mouse glioma implantation model were used. Pyk2 (Tyr579/580) and FAK (Tyr925) phosphorylation was analyzed by western blotting. Viability, cell cycle, migration, invasion and invadopodia formation were investigated in vitro. Animal survival, tumor size and invasion, TUNEL apoptotic cell death and the Ki67 proliferation index were evaluated in vivo upon treatment with TMZ (50 mg/kg, once/day, orally) and the Pyk2/FAK inhibitor PF-562271 (once/daily, 50 mg/kg, orally) vs. TMZ monotherapy. RESULTS In vitro studies revealed significantly reduced viability, cell cycle progression, invasion and invadopodia with TMZ (100 µM) + PF-562271 (16 nM) compared with TMZ alone. In vivo studies demonstrated that combinatorial treatment led to prominent reductions in tumor size and invasive margins, extensive signs of apoptosis and a reduced proliferation index, together with a 15% increase in the survival rate in animals, compared with TMZ monotherapy. CONCLUSION TMZ + PF-562271 eliminates TMZ-related Pyk2/FAK activation in GBM and improves the treatment efficacy.
Collapse
Affiliation(s)
- Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| | - Rebeca Nuñez
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| | - Yuriy Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| | - Lilia Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| |
Collapse
|
3
|
Zheng X, Qiu J, Pan W, Gong Y, Zhang W, Jiang T, Chen L, Chen W, Hong Z. Selumetinib - a potential small molecule inhibitor for osteoarthritis treatment. Front Pharmacol 2022; 13:938133. [PMID: 36238555 PMCID: PMC9552066 DOI: 10.3389/fphar.2022.938133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives: Osteoarthritis (OA) is a common disease that mainly manifests as inflammation and destruction of cartilage and subchondral bone. Recently, necroptosis has been reported to play an important role in the development of OA. Selumetinib displays a contrasting expression pattern to necroptosis-related proteins. The present study aimed to investigate the potential therapeutic effects of selumetinib in OA process. Methods:In vitro experiments, interleukin-1β (IL-1β) was used to induce necroptosis of chondrocytes. We used high-density cell culture, Western Blot and PT-PCR to observe the effect of different concentrations of selumetinib on the extracellular matrix of cartilage. Afterwards, we visualized the effect of selumetinib on osteoclast formation by TRAP staining and F-actin rings. In vivo experiment, we induced experimental osteoarthritis in mice by surgically destabilizing the medial meniscus (DMM) while administering different concentrations of selumetinib intraperitoneally. Results: Selumetinib promoted cartilage matrix synthesis and inhibited matrix decomposition. We found that selumetinib exerted a protective function by inhibiting the activation of RIP1/RIP3/MLKL signaling pathways in chondrocytes. Selumetinib also inhibited the activation of RANKL-induced NF-κB and MAPK signaling pathways in BMMs, thereby interfering with the expression of osteoclast marker genes. In the DMM-induced OA model, a postsurgical injection of selumetinib inhibited cartilage destruction and lessened the formation of TRAP-positive osteoclasts in subchondral bone. Conclusion: Selumetinib can protect chondrocytes by regulating necroptosis to prevent the progression of OA and reduce osteoclast formation. In summary, our findings suggest that selumetinib has potential as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Xiaohang Zheng
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianxin Qiu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenjun Pan
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Yuhang Gong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Weikang Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Ting Jiang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Lihua Chen
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Weifu Chen
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Weifu Chen, ; Zhenghua Hong,
| | - Zhenghua Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Weifu Chen, ; Zhenghua Hong,
| |
Collapse
|
4
|
Neurofibromatosis Type 1 Gene Alterations Define Specific Features of a Subset of Glioblastomas. Int J Mol Sci 2021; 23:ijms23010352. [PMID: 35008787 PMCID: PMC8745708 DOI: 10.3390/ijms23010352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.
Collapse
|
5
|
Park GH, Lee SJ, Lee CG, Kim J, Park E, Jeong SY. Neurofibromin Deficiency Causes Epidermal Growth Factor Receptor Upregulation through the Activation of Ras/ERK/SP1 Signaling Pathway in Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheet Tumor. Int J Mol Sci 2021; 22:13308. [PMID: 34948100 PMCID: PMC8706697 DOI: 10.3390/ijms222413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant human genetic disorder. The progression of benign plexiform neurofibromas to malignant peripheral nerve sheet tumors (MPNSTs) is a major cause of mortality in patients with NF1. Although elevated epidermal growth factor receptor (EGFR) expression plays a crucial role in the pathogenesis of MPNST, the cause of EGFR overexpression remains unclear. Here, we assessed EGFR expression levels in MPNST tissues of NF1 patients and NF1 patient-derived MPNST cells. We found that the expression of EGFR was upregulated in MPNST tissues and MPNST cells, while the expression of neurofibromin was significantly decreased. Manipulation of NF1 expression by NF1 siRNA treatment or NF1-GAP-related domain overexpression demonstrated that EGFR expression levels were closely and inversely correlated with neurofibromin levels. Notably, knockdown of the NF1 gene by siRNA treatment augmented the nuclear localization of phosphorylated SP1 (pSP1) and enhanced pSP1 binding to the EGFR gene promoter region. Our results suggest that neurofibromin deficiency in NF1-associated MPNSTs enhances the Ras/ERK/SP1 signaling pathway, which in turn may lead to the upregulation of EGFR expression. This study provides insight into the progression of benign tumors and novel therapeutic approaches for treatment of NF1-associated MPNSTs.
Collapse
Affiliation(s)
- Gun-Hoo Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (G.-H.P.); (S.-J.L.); (C.-G.L.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Su-Jin Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (G.-H.P.); (S.-J.L.); (C.-G.L.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Chang-Gun Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (G.-H.P.); (S.-J.L.); (C.-G.L.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (G.-H.P.); (S.-J.L.); (C.-G.L.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (G.-H.P.); (S.-J.L.); (C.-G.L.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (G.-H.P.); (S.-J.L.); (C.-G.L.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| |
Collapse
|