1
|
Dupont L, Delattre BMA, Sans Merce M, Poletti PA, Boudabbous S. An Exploratory Study: Can Native T1 Mapping Differentiate Sarcoma from Benign Soft Tissue Tumors at 1.5 T and 3 T? Cancers (Basel) 2024; 16:3852. [PMID: 39594807 PMCID: PMC11592662 DOI: 10.3390/cancers16223852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: T1 relaxation time has been shown to be valuable in detecting and characterizing tumors in various organs. This study aims to determine whether native T1 relaxation time can serve as a useful tool in distinguishing sarcomas from benign tumors. Methods: In this retrospective study, patients with histologically confirmed soft tissue sarcomas and benign tumors were included. Only patients who had not undergone prior treatment or surgery and whose magnetic resonance imaging (MRI) included native T1 mapping were considered. Images were acquired using both 1.5 T and 3 T MRI scanners. T1 histogram parameters were measured in regions of interest encompassing the entire tumor volume, as well as in healthy muscle tissue. Results: Out of 316 cases, 16 sarcoma cases and 9 benign tumor cases were eligible. The T1 values observed in sarcoma did not significantly differ from those in benign lesions in both 1.5 T and 3 T MRIs (p1.5T = 0.260 and p3T = 0.119). However, T1 values were found to be lower in healthy tissues compared to sarcoma at 3 T (p = 0.020), although this difference did not reach statistical significance at 1.5 T (p = 0.063). At both 1.5 T and 3 T, no significant difference between healthy muscle measured in sarcoma cases or benign tumor cases was observed (p1.5T = 0.472 and p3T = 0.226). Conclusions: T1 mapping has the potential to serve as a promising tool for differentiating sarcomas from benign tumors in baseline assessments. However, the standardization of imaging protocols and further improvements in T1 mapping techniques are necessary to fully realize its potential.
Collapse
Affiliation(s)
| | | | | | | | - Sana Boudabbous
- Diagnostic Department, Radiology Unit, Geneva University Hospital, 1205 Geneva, Switzerland; (L.D.); (B.M.A.D.); (M.S.M.); (P.A.P.)
| |
Collapse
|
2
|
Schmitz F, Sedaghat S. Inferring malignancy grade of soft tissue sarcomas from magnetic resonance imaging features: A systematic review. Eur J Radiol 2024; 177:111548. [PMID: 38852328 DOI: 10.1016/j.ejrad.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Systematic reviews on the grading of STS using MRI are lacking. This review analyses the role of different MRI features in inferring the histological grade of STS. MATERIALS AND METHODS A systematic review was conducted and is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) checklist. The electronic databases of PubMed/MEDLINE were systematically searched for literature addressing the correlation of MRI findings in soft tissue sarcoma with tumor grade. As keywords "MRI", "magnetic resonance imaging", "sarcoma", "grade", "grading", and "FNCLCC" have been selected. RESULTS 14 studies have been included in this systematic review. Tumor size (p = 0.015 (51 patients) to p = 0.81 (36 patients)), tumor margin (p < 0.001 (95 patients) to 0.93 (36 patients)), necrosis (p = 0.004 (50 patients) to p = 0.65 (95 patients)), peritumoral edema (p = 0.002 (130 patients) to p = 0.337 (40 patients)), contrast enhancement (p < 0.01 (50 patients) to 0.019 (51 patients)) and polycyclic/multilobulated tumor configuration (p = 0.008 (71 patients)) were significantly associated with STS malignancy grade in most of the included studies. Heterogeneity in T2w images (p = 0.003 (130 patients) to 0.202 (40 patients)), signal intensity in T1w images/ hemorrhage (p = 0.02 (130 patients) to 0.5 (31 patients)), peritumoral contrast enhancement (p < 0.001 (95 patients) to 0.253 (51 patients)) and tumoral diffusion restriction (p = 0.01 (51 patients) to 0.53 (52 patients)) were regarded as significantly associated with FNCLCC grade in some of the studies which investigated these features. Most other MRI features were not significant. CONCLUSION Several MRI features, such as tumor size, necrosis, peritumoral edema, peritumoral contrast enhancement, intratumoral contrast enhancement, and polycyclic/multilobulated tumor configuration may indicate the malignancy grade of STS. However, further studies are needed to gain consensus.
Collapse
Affiliation(s)
- Fabian Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Pizzuto DA, Calandriello L, De Martino I, De Micheli ML, De Summa M, Annunziata S. Positron emission tomography/magnetic resonance in musculoskeletal disorders: proper sequences and workflow optimization. Clin Transl Imaging 2024; 12:253-261. [DOI: 10.1007/s40336-023-00611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/17/2023] [Indexed: 04/23/2025]
|
4
|
Crombé A, Matcuk GR, Fadli D, Sambri A, Patel DB, Paioli A, Kind M, Spinnato P. Role of Imaging in Initial Prognostication of Locally Advanced Soft Tissue Sarcomas. Acad Radiol 2023; 30:322-340. [PMID: 35534392 DOI: 10.1016/j.acra.2022.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although imaging is central in the initial staging of patients with soft tissue sarcomas (STS), it remains underused and few radiological features are currently used in practice for prognostication and to help guide the best therapeutic strategy. Yet, several prognostic qualitative and quantitative characteristics from magnetic resonance imaging (MRI) and positron emission tomography (PET) have been identified over these last decades. OBJECTIVE After an overview of the current validated prognostic features based on baseline imaging and their integration into prognostic tools, such as nomograms used by clinicians, the aim of this review is to summarize more complex and innovative MRI, PET, and radiomics features, and to highlight their role to predict indirectly (through histologic grade) or directly the patients' outcomes.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, 229, cours de l'Argonne, F-33076, Bordeaux, France; Department of musculoskeletal imaging, Pellegrin University Hospital, 2, place Amélie Raba-Léon, F-33000, Bordeaux, France; Models in Oncology (MONC) Team, INRIA Bordeaux Sud-Ouest, CNRS UMR 5251, Institut de Mathématiques de Bordeaux & Bordeaux University, 351 cours de la libération, F-33400 Talence, France.
| | - George R Matcuk
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California
| | - David Fadli
- Department of musculoskeletal imaging, Pellegrin University Hospital, 2, place Amélie Raba-Léon, F-33000, Bordeaux, France
| | - Andrea Sambri
- Alma Mater Studiorum, University of Bologna, Bologna, Italy; IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Dakshesh B Patel
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anna Paioli
- Osteoncology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michele Kind
- Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, 229, cours de l'Argonne, F-33076, Bordeaux, France
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
5
|
Chatziantoniou C, Schoot RA, van Ewijk R, van Rijn RR, ter Horst SAJ, Merks JHM, Leemans A, De Luca A. Methodological considerations on segmenting rhabdomyosarcoma with diffusion-weighted imaging-What can we do better? Insights Imaging 2023; 14:19. [PMID: 36720720 PMCID: PMC9889596 DOI: 10.1186/s13244-022-01351-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Diffusion-weighted MRI is a promising technique to monitor response to treatment in pediatric rhabdomyosarcoma. However, its validation in clinical practice remains challenging. This study aims to investigate how the tumor segmentation strategy can affect the apparent diffusion coefficient (ADC) measured in pediatric rhabdomyosarcoma. MATERIALS AND METHODS A literature review was performed in PubMed using search terms relating to MRI and sarcomas to identify commonly applied segmentation strategies. Seventy-six articles were included, and their presented segmentation methods were evaluated. Commonly reported segmentation strategies were then evaluated on diffusion-weighted imaging of five pediatric rhabdomyosarcoma patients to assess their impact on ADC. RESULTS We found that studies applied different segmentation strategies to define the shape of the region of interest (ROI)(outline 60%, circular ROI 27%), to define the segmentation volume (2D 44%, multislice 9%, 3D 21%), and to define the segmentation area (excludes edge 7%, excludes other region 19%, specific area 27%, whole tumor 48%). In addition, details of the segmentation strategy are often unreported. When implementing and comparing these strategies on in-house data, we found that excluding necrotic, cystic, and hemorrhagic areas from segmentations resulted in on average 5.6% lower mean ADC. Additionally, the slice location used in 2D segmentation methods could affect ADC by as much as 66%. CONCLUSION Diffusion-weighted MRI studies in pediatric sarcoma currently employ a variety of segmentation methods. Our study shows that different segmentation strategies can result in vastly different ADC measurements, highlighting the importance to further investigate and standardize segmentation.
Collapse
Affiliation(s)
- Cyrano Chatziantoniou
- grid.7692.a0000000090126352Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands ,grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Reineke A. Schoot
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roelof van Ewijk
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rick R. van Rijn
- grid.7177.60000000084992262Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Simone A. J. ter Horst
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands ,grid.417100.30000 0004 0620 3132Department of Radiology and Nuclear Medicine, Wilhelmina Children’s Hospital UMC Utrecht, Utrecht, The Netherlands
| | - Johannes H. M. Merks
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alexander Leemans
- grid.7692.a0000000090126352Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Alberto De Luca
- grid.7692.a0000000090126352Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Department of Neurology, UMC Utrecht Brain Center, UMCUtrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Crombé A, Kind M, Fadli D, Miceli M, Linck PA, Bianchi G, Sambri A, Spinnato P. Soft-tissue sarcoma in adults: Imaging appearances, pitfalls and diagnostic algorithms. Diagn Interv Imaging 2022; 104:207-220. [PMID: 36567193 DOI: 10.1016/j.diii.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
This article provides an overview of the current knowledge regarding diagnostic imaging of patients with soft-tissue sarcomas, which is a heterogeneous group of rare mesenchymal malignancies. After an initial contextualization, diagnostic flow-chart based on initial radiological findings of soft-tissue masses (with specific focus on adipocytic soft-tissue tumors [STTs], hemorragic STTs and retroperitoneal STTs) are provided considering relevant results from novel researches, guidelines, and experts' viewpoints, with the aim to help radiologists and clinicians in their practice. Particularly, the central place of sarcoma reference centers in the diagnostic and therapeutic management is highlighted, as well as the pivotal role that radiologists should play to correctly identify patients with soft-tissue sarcoma at the initial stage of the disease. Indications and methods for performing imaging-guided biopsies are also discussed, as well as clues to improve soft-tissue sarcoma grading with conventional and quantitative imaging.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, Bordeaux 33076, France; Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, Bordeaux 33076, France; Models in Oncology (MONC) Team, INRIA Bordeaux Sud-Ouest, CNRS UMR 5251 & Bordeaux University, 33400 Talence, France.
| | - Michèle Kind
- Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, Bordeaux 33076, France
| | - David Fadli
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, Bordeaux 33076, France
| | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Pierre-Antoine Linck
- Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, Bordeaux 33076, France
| | - Giuseppe Bianchi
- Orthopedic Musculoskeletal Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Andrea Sambri
- Orthopedics and Traumatology Department, IRCCS Azienda Ospedaliero Universitaria di Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| |
Collapse
|
7
|
Hashimoto K, Nishimura S, Ito T, Kakinoki R, Akagi M. Immunohistochemical expression and clinicopathological assessment of PD-1, PD-L1, NY-ESO-1, and MAGE-A4 expression in highly aggressive soft tissue sarcomas. Eur J Histochem 2022; 66. [PMID: 35448937 PMCID: PMC9046686 DOI: 10.4081/ejh.2022.3393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/16/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy has altered the treatment paradigm for soft tissue sarcomas (STSs). Considering the limited information regarding the clinical significance of immunohistochemical markers in STS, the purpose of this study was to determine the clinical significance of programmed cell death-1 (PD-1), PD ligand-1(PD-L1), New York esophageal squamous cell carcinoma-1 (NY-ESO-1), and melanoma-associated antigen-A4 (MAGE-A4) expression in STSs. Twenty-two patients (median age, 72.5 years) with STSs treated at our hospital were included in this study. The specimens obtained at the time of biopsy were used to perform immunostaining for PD-1, PD-L1, NY-ESO, and MAGE-A4. The rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells and cases were calculated. The correlations among the positive cell rates of the immunohistochemical markers as well as their correlations with the histological grade, tumor size, or maximum standardized uptake (SUVmax) value were also determined. The average rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells were 4.39%, 28.0%, 18.2%, and 39.4%, respectively. PD-1-, PD-L1-, NY-ESO-1-, and MAGE-A4- positive cell rates showed weak to strong correlations with the SUVmax value. Thus, PD-1, PD-L1, NY-ESO, and MAGE-A4 expressions might be involved in the aggressive elements of STSs.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Ryosuke Kakinoki
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
8
|
Clinicopathological Assessment of Cancer/Testis Antigens NY-ESO-1 and MAGE-A4 in Highly Aggressive Soft Tissue Sarcomas. Diagnostics (Basel) 2022; 12:diagnostics12030733. [PMID: 35328286 PMCID: PMC8946957 DOI: 10.3390/diagnostics12030733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate the clinical significance of the expression of NY-ESO-1 and MAGE-A4 in soft tissue sarcoma (STS). Immunostaining for NY-ESO-1, MAGE-A4, and Ki67 was performed using pathological specimens harvested from 10 undifferentiated pleomorphic sarcoma (UPS), nine myxofibrosarcoma (MFS), and three malignant peripheral nerve sheath tumor (MPNST) patients treated at our hospital. We examined the correlation of NY-ESO-1 and MAGE-A4 expression levels with tumor size, histological grade, and SUVmax values. Positive cell rates of various markers were also compared between patients in remission and those who were not in remission. The rates of cases positive for NY-ESO, MAGE-A4, and Ki67 were 50%, 63.6%, and 90.9%, respectively. The average rates of cells positive for NY-ESO, MAGE-A4, and Ki67 in all STS types were 18.2%, 39.4%, and 16.8%, respectively. A positive correlation was observed between rates of cells positive for NY-ESO-1 and MAGE-A4 and between NY-ESO-1 and MAGE-A4 expression levels and clinical features. There was no significant difference in the positive cell rate of NY-ESO-1 or MAGE-A4 between remission and non-remission cases. Our results suggest that NY-ESO-1 and MAGE-A4 expression may be useful for the diagnosis and prognostication of UPS, MFS, and MPNST.
Collapse
|
9
|
Kalisvaart GM, Grootjans W, Bovée JVMG, Gelderblom H, van der Hage JA, van de Sande MAJ, van Velden FHP, Bloem JL, de Geus-Oei LF. Prognostic Value of Quantitative [18F]FDG-PET Features in Patients with Metastases from Soft Tissue Sarcoma. Diagnostics (Basel) 2021; 11:diagnostics11122271. [PMID: 34943508 PMCID: PMC8700088 DOI: 10.3390/diagnostics11122271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023] Open
Abstract
Background: Prognostic biomarkers are pivotal for adequate treatment decision making. The objective of this study was to determine the added prognostic value of quantitative [18F]FDG-PET features in patients with metastases from soft tissue sarcoma (STS). Methods: Patients with metastases from STS, detected by (re)staging [18F]FDG-PET/CT at Leiden University Medical Centre, were retrospectively included. Clinical and histopathological patient characteristics and [18F]FDG-PET features (SUVmax, SUVpeak, SUVmean, total lesion glycolysis, and metabolic tumor volume) were analyzed as prognostic factors for overall survival using a Cox proportional hazards model and Kaplan–Meier methods. Results: A total of 31 patients were included. SUVmax and SUVpeak were significantly predictive for overall survival (OS) in a univariate analysis (p = 0.004 and p = 0.006, respectively). Hazard ratios (HRs) were 1.16 per unit increase for SUVmax and 1.20 per unit for SUVpeak. SUVmax and SUVpeak remained significant predictors for overall survival after correction for the two strongest predictive clinical characteristics (number of lesions and performance status) in a multivariate analysis (p = 0.02 for both). Median SUVmax and SUVpeak were 5.7 and 4.9 g/mL, respectively. The estimated mean overall survival in patients with SUVmax > 5.7 g/mL was 14 months; otherwise, it was 39 months (p < 0.001). For patients with SUVpeak > 4.9 g/mL, the estimated mean overall survival was 18 months; otherwise, it was 33 months (p = 0.04). Conclusions: In this study, SUVmax and SUVpeak were independent prognostic factors for overall survival in patients with metastases from STS. These results warrant further investigation of metabolic imaging with [18F]FDG-PET/CT in patients with metastatic STS.
Collapse
Affiliation(s)
- Gijsbert M. Kalisvaart
- Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands; (W.G.); (F.H.P.v.V.); (J.L.B.); (L.-F.d.G.-O.)
- Correspondence:
| | - Willem Grootjans
- Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands; (W.G.); (F.H.P.v.V.); (J.L.B.); (L.-F.d.G.-O.)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
| | - Jos A. van der Hage
- Department of Surgical Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
| | | | - Floris H. P. van Velden
- Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands; (W.G.); (F.H.P.v.V.); (J.L.B.); (L.-F.d.G.-O.)
| | - Johan L. Bloem
- Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands; (W.G.); (F.H.P.v.V.); (J.L.B.); (L.-F.d.G.-O.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands; (W.G.); (F.H.P.v.V.); (J.L.B.); (L.-F.d.G.-O.)
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|