1
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
2
|
Sawalha S, Abdallah S, Barham A, Badawi H, Barham Z, Ghareeb A, Misia G, Collavini S, Silvestri A, Prato M, Assali M. Green synthesis of fluorescent carbon nanodots from sage leaves for selective anticancer activity on 2D liver cancer cells and 3D multicellular tumor spheroids. NANOSCALE ADVANCES 2023; 5:5974-5982. [PMID: 37881717 PMCID: PMC10597557 DOI: 10.1039/d3na00269a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/17/2023] [Indexed: 10/27/2023]
Abstract
Carbon nanodots, a family of carbon-based nanomaterials, have been synthesized through different methods from various resources, affecting the properties of the resulting product and their application. Herein, carbon nanodots (CNDs) were synthesized with a green and simple hydrothermal method from sage leaves at 200 °C for 6 hours. The obtained CNDs are well dispersed in water with a negative surface charge (ζ-potential = -11 mV) and an average particle size of 3.6 nm. The synthesized CNDs showed concentration-dependent anticancer activity toward liver cancer (Hep3B) cell lines and decreased the viability of the cancer cells to 23% at the highest used concentration (250 μg ml-1 of CNDs). More interestingly, the cytotoxicity of the CNDs was tested in normal liver cell lines (LX2) revealed that the CNDs at all tested concentrations didn't affect their viability including at the highest concentration showing a viability of 86.7%. The cellular uptake mechanisms of CNDs were investigated and they are thought to be through energy-dependent endocytosis and also through passive diffusion. The main mechanisms of endocytosis were lipid and caveolae-mediated endocytosis. In addition, the CNDs have hindered the formation of 3D spheroids from the Hep3B hepatocellular carcinoma cell line. Hence, it would be concluded that the synthesized CNDs from sage are more highly selective to liver cancer cells than normal ones. The CNDs' cancer-killing ability would be referred to as the production of reactive oxygen species.
Collapse
Affiliation(s)
- Shadi Sawalha
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Samer Abdallah
- Department of Biology and Biotechnology, Faculty of Science, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Amal Barham
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Hala Badawi
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Zeina Barham
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Ahmad Ghareeb
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Giuseppe Misia
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste, University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
| | - Silvia Collavini
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA) Donostia-San Sebastián 20014 Spain
| | - Alessandro Silvestri
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice Venezia 30170 Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste, University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA) Donostia-San Sebastián 20014 Spain
| | - Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| |
Collapse
|
3
|
Yaralı Çevik ZB, Karaman O, Topaloğlu N. Synergistic effects of integrin binding peptide (RGD) and photobiomodulation therapies on bone-like microtissues to enhance osteogenic differentiation. BIOMATERIALS ADVANCES 2023; 149:213392. [PMID: 36965403 DOI: 10.1016/j.bioadv.2023.213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Bone tissue engineering aims to diversify and enhance the strategies for bone regeneration to overcome bone-related health problems. Bone mimetic peptides such as Gly-Arg-Gly-Asp-Ser (RGD) are useful tools for osteogenic differentiation. Similarly, photobiomodulation (PBM) at 600-800 nm of wavelength range improves bone tissue healing via the production of intracellular reactive oxygen species (ROS), ATP synthesis, and nitric oxide (NO) release. Besides, traditional monolayer cell culture models have limited conditions to exhibit the details of a mechanism such as a peptide or PBM therapy. However, scaffold-free microtissues (SFMs) can mimic a tissue more properly and be an efficient way to understand the mechanism of therapy via cell-cell interaction. Thus, the synergistic effects of RGD peptide (1 mM) and PBM applications (1 J/cm2 energy density at 655 nm of wavelength and 5 J/cm2 energy density at 808 nm of wavelength) were evaluated on SFMs formed with the co-culture of Human Bone Marrow Stem Cells (hBMSC) and Human Umbilical Vein Endothelial Cells (HUVEC) for osteogenic differentiation. Cell viability assays, mechanistic analysis, and the evaluation of osteogenic differentiation markers were performed. Combined therapies of RGD and PBM were more successful to induce osteogenic differentiation than single therapies. Especially, RGD + PBM at 655 nm group exhibited a higher capability of osteogenic differentiation via ROS production, ATP synthesis, and NO release. It can be concluded that the concomitant use of RGD and PBM may enhance bone regeneration and become a promising therapeutic tool to heal bone-related problems in clinics.
Collapse
Affiliation(s)
- Ziyşan Buse Yaralı Çevik
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Ozan Karaman
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Nermin Topaloğlu
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| |
Collapse
|
4
|
The Chorioallantoic Membrane Xenograft Assay as a Reliable Model for Investigating the Biology of Breast Cancer. Cancers (Basel) 2023; 15:cancers15061704. [PMID: 36980588 PMCID: PMC10046776 DOI: 10.3390/cancers15061704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The chorioallantoic membrane (CAM) assay is an alternative in vivo model that allows for minimally invasive research of cancer biology. Using the CAM assay, we investigated phenotypical and functional characteristics (tumor grade, mitosis rate, tumor budding, hormone receptor (HR) and HER2 status, Ki-67 proliferation index) of two breast cancer cell lines, MCF-7 and MDA-MB-231, which resemble the HR+ (luminal) and triple-negative breast cancer (TNBC) subgroups, respectively. Moreover, the CAM results were directly compared with murine MCF-7- and MDA-MB-231-derived xenografts and human patient TNBC tissue. Known phenotypical and biological features of the aggressive triple-negative breast cancer cell line (MDA-MB-231) were confirmed in the CAM assay, and mouse xenografts. Furthermore, the histomorphological and immunohistochemical variables assessed in the CAM model were similar to those in human patient tumor tissue. Given the confirmation of the classical biological and growth properties of breast cancer cell lines in the CAM model, we suggest this in vivo model to be a reliable alternative test system for breast cancer research to reduce murine animal experiments.
Collapse
|
5
|
Gundelia tournefortii inhibits hepatocellular carcinoma progression by lowering gene expression of the cell cycle and hepatocyte proliferation in immunodeficient mice. Biomed Pharmacother 2022; 156:113885. [DOI: 10.1016/j.biopha.2022.113885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
|
6
|
Qorri B, Mokhtari RB, Harless WW, Szewczuk MR. Next Generation of Cancer Drug Repurposing: Therapeutic Combination of Aspirin and Oseltamivir Phosphate Potentiates Gemcitabine to Disable Key Survival Pathways Critical for Pancreatic Cancer Progression. Cancers (Basel) 2022; 14:1374. [PMID: 35326525 PMCID: PMC8946854 DOI: 10.3390/cancers14061374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapeutics and high metastatic rates contribute to the abysmal survival rate in patients with pancreatic cancer. An alternate approach for treating human pancreatic cancer involves repurposing the anti-inflammatory drug, aspirin (ASA), with oseltamivir phosphate (OP) in combination with the standard chemotherapeutic agent, gemcitabine (GEM). The question is whether treatment with ASA and OP can sensitize cancer cells to the cytotoxicity induced by GEM and limit the development of chemoresistance. To assess the key survival pathways critical for pancreatic cancer progression, we used the AlamarBlue cytotoxicity assay to determine the cell viability and combination index for the drug combinations, flow cytometric analysis of annexin V apoptosis assay to detect apoptotic and necrotic cells, fluorometric QCM™ chemotaxis migration assay to assess cellular migration, fluorometric extracellular matrix (ECM) cell adhesion array kit to assess the expression of the ECM proteins, scratch wound assay using the 96-well WoundMaker™, and the methylcellulose clonogenic assay to assess clonogenic potential. The combination of ASA and OP with GEM significantly upended MiaPaCa-2 and PANC-1 pancreatic cancer cell viability, clonogenic potential, expression of critical extracellular matrix proteins, migration, and promoted apoptosis. ASA in combination with OP significantly improves the effectiveness of GEM in the treatment of pancreatic cancer and disables key survival pathways critical to disease progression.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (B.Q.); (R.B.M.)
| | - Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (B.Q.); (R.B.M.)
| | | | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (B.Q.); (R.B.M.)
| |
Collapse
|
7
|
Lyophilized Gelatin@non-Woven Scaffold to Promote Spheroids Formation and Enrich Cancer Stem Cell Incidence. NANOMATERIALS 2022; 12:nano12050808. [PMID: 35269296 PMCID: PMC8912757 DOI: 10.3390/nano12050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
A gelatin@non-woven fabric (gelatin@NWF) hybrid scaffold with tailored micropore structures was fabricated by lyophilizing, using gelatin to support cells and the NWF matrix as a frame to enforce the mechanical stability of gelatin. By freezing the gelatin and NWF hybrid in liquid nitrogen and subsequently lyophilizing and crosslinking the process, the gelatin@NWF scaffold was prepared to support cell growth and promote cell aggregation and spheroids’ formation. The results indicated that by tuning the lyophilizing temperature, the micropore size on the gelatin could be tailored. Consequently, tumor spheroids can be formed on gelatin@NWF scaffolds with honeycomb-like pores around 10 µm. The cell spheroids formed on the tailored gelatin@NWF scaffold were characterized in cancer stem cell (CSC)-associated gene expression, chemotherapy drug sensitivity, and motility. It was found that the expression of the CSC-associated biomarkers SOX2, OCT4, and ALDH1A1 in gene and protein levels in DU 145 cell spheres formed on gelatin@NWF scaffolds were significantly higher than in those cells grown as monolayers. Moreover, cells isolated from spheroids grown on gelatin@NWF scaffold showed higher drug resistance and motility. Tumor spheroids can be formed on a long-term storage scaffold, highlighting the potential of gelatin@NWF as a ready-to-use scaffold for tumor cell sphere generation and culturing.
Collapse
|
8
|
Troitskaya O, Novak D, Nushtaeva A, Savinkova M, Varlamov M, Ermakov M, Richter V, Koval O. EGFR Transgene Stimulates Spontaneous Formation of MCF7 Breast Cancer Cells Spheroids with Partly Loss of HER3 Receptor. Int J Mol Sci 2021; 22:12937. [PMID: 34884742 PMCID: PMC8657849 DOI: 10.3390/ijms222312937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular spheroids with 3D cell-cell interactions are a useful model to simulate the growth conditions of cancer. There is evidence that in tumor spheroids, the expression of various essential molecules is changed compared to the adherent form of cell cultures. These changes include growth factor receptors and ABC transporters and result in the enhanced invasiveness of the cells and drug resistance. It is known that breast adenocarcinoma MCF7 cells can spontaneously form 3D spheroids and such spheroids are characterized by high expression of EGFR/HER2, while the natural phenotype of MCF7 cells is EGFRlow/HER2low. Therefore, it was interesting to reveal if high epidermal growth factor receptor (EGFR) expression is sufficient for the conversion of adherent MCF7 to spheroids. In this study, an MCF7 cell line with high expression of EGFR was engineered using the retroviral transduction method. These MCF7-EGFR cells assembled in spheroids very quickly and grew predominantly as a 3D suspension culture with no special plates, scaffolds, growth supplements, or exogenous matrixes. These spheroids were characterized by a rounded shape with a well-defined external border and 100 µM median diameter. The sphere-forming ability of MCF7-EGFR cells was up to 5 times stronger than in MCF7wt cells. Thus, high EGFR expression was the initiation factor of conversion of adherent MCF7wt cells to spheroids. MCF7-EGFR spheroids were enriched by the cells with a cancer stem cell (CSC) phenotype CD24-/low/CD44- in comparison with parental MCF7wt cells and MCF7-EGFR adhesive cells. We suppose that these properties of MCF7-EGFR spheroids originate from the typical features of parental MCF7 cells. We showed the decreasing of HER3 receptors in MCF7-EGFR spheroids compared to that in MCFwt and in adherent MCF7-EGFR cells, and the same decrease was observed in the MCF7wt spheroids growing under the growth factors stimulation. To summarize, the expression of EGFR transgene in MCF7 cells stimulates rapid spheroids formation; these spheroids are enriched by CSC-like CD24-/CD44- cells, they partly lose HER3 receptors, and are characterized by a lower potency in drug resistance pomp activation compared to MCF7wt. These MCF7-EGFR spheroids are a useful cancer model for the development of anticancer drugs, including EGFR-targeted therapeutics.
Collapse
Affiliation(s)
- Olga Troitskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Diana Novak
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Anna Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Maria Savinkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Mikhail Varlamov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Mikhail Ermakov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Olga Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|