1
|
Arefnezhd R, Chahardehi AM, Asadi A, Shadravan MM, Shariati A, Rezaee A, Radmanesh M, Nazarian M, Helfi M, Soleimani Meigoli MS, Motedayyen H, Rezaei-Tazangi F, Tavakoli MR. The function of chaperones in the radioresistance of glioblastoma: a new insight into the current knowledge. Brain Tumor Pathol 2025:10.1007/s10014-025-00501-7. [PMID: 40259161 DOI: 10.1007/s10014-025-00501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
Radiotherapy remains a cornerstone of brain tumor treatment; however, its effectiveness is frequently undermined by the development of radioresistance. This review highlights the pivotal role of molecular chaperones in promoting radioresistance and explores the potential to increase radioresistance in brain cancers, particularly glioblastoma (GBM). Among chaperones, heat shock proteins (HSPs), such as HSP70 and HSP90, have been identified as key contributors to radioresistance, acting through mechanisms that include the maintenance of protein homeostasis, enhancement of DNA repair processes, and protection of cancer stem cells. Specifically, HSP70 and HSP90 are crucial in stabilizing oncogenic proteins and preventing apoptosis, thus enabling tumor survival during radiotherapy. Also, HSP27 and GRP78 are involved in the radioresistance of brain tumors mainly by suppressing cell death and enhancing tumor stem cell propagation. Emerging evidence also suggests that targeting these chaperones, in combination with radiotherapy, can enhance tumor radiosensitivity, offering promising therapeutic strategies. Recent studies have revealed novel aspects of chaperone-mediated autophagy and interaction with non-coding RNAs, providing deeper insights into the molecular mechanisms underlying radioresistance. This review also addresses the potential of combining chaperone-targeted therapies, such as HSP90 inhibitors, with radiotherapy to overcome resistance. Ultimately, understanding these mechanisms may pave the way for innovative clinical applications and personalized therapeutic approaches in brain tumor treatment.
Collapse
Affiliation(s)
- Reza Arefnezhd
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amirmasoud Asadi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrsa Radmanesh
- Faculty of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammadreza Nazarian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Helfi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
De Mendoza AM, Michlíková S, Castro PS, Muñoz AG, Eckhardt L, Lange S, Kunz-Schughart LA. Generalized, sublethal damage-based mathematical approach for improved modeling of clonogenic survival curve flattening upon hyperthermia, radiotherapy, and beyond. Phys Med Biol 2025; 70:025022. [PMID: 39761642 DOI: 10.1088/1361-6560/ada680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/06/2025] [Indexed: 01/21/2025]
Abstract
Objective. Mathematical modeling can offer valuable insights into the behavior of biological systems upon treatment. Different mathematical models (empirical, semi-empirical, and mechanistic) have been designed to predict the efficacy of either hyperthermia (HT), radiotherapy (RT), or their combination. However, mathematical approaches capable of modeling cell survival from shared general principles for both mono-treatments alone and their co-application are rare. Moreover, some cell cultures show dose-dependent saturation in response to HT or RT, manifesting in survival curve flattenings. An advanced survival model must, therefore, appropriately reflect such behavior.Approach. We propose a mathematical approach to model the effect of both treatments based on the general principle of sublethal damage (SLD) accumulation for the induction of cell death and irreversible proliferation arrest. Our approach extends Jung's model on heat-induced cellular inactivation by incorporating dose-dependent recovery rates that delineate changes in SLD restoration.Main results. The resulting unified model (Umodel) accurately describes HT and RT survival outcomes, applies to simultaneous thermoradiotherapy modeling, and is particularly suited to reproduce survival curve flattening phenomena. We demonstrate the Umodel's robust performance (R2 0.95) based on numerous clonogenic cell survival data sets from the literature and our experimental studies.Significance. The proposed Umodel allows using a single unified mathematical function based on generalized principles of accumulation of SLD with implemented radiosensitization, regardless of the type of energy deposited and the mechanism of action. It can reproduce various patterns of clonogenic survival curves, including any flattening, thus encompassing the variability of cell reactions to therapy, thereby potentially better reflecting overall tumor responses. Our approach opens a range of options for further model developments and strategic therapy outcome predictions of sequential treatments applied in different orders and varying recovery intervals between them.
Collapse
Affiliation(s)
- Adriana M De Mendoza
- Physics Department, Pontificia Universidad Javeriana, Carrera 7 N 40 - 62, Bogotá, 110231, Colombia
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Soňa Michlíková
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01328, Germany
| | - Paula S Castro
- Universidad Distrital-Francisco José de Caldas, Bogotá 111611, Colombia
| | - Anni G Muñoz
- Physics Department, Pontificia Universidad Javeriana, Carrera 7 N 40 - 62, Bogotá, 110231, Colombia
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Lisa Eckhardt
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
| | - Steffen Lange
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, 01069 Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
3
|
Ostapowicz J, Ostrowska K, Golusiński W, Kulcenty K, Suchorska WM. Improving therapeutic strategies for Head and Neck Cancer: Insights from 3D hypoxic cell culture models in treatment response evaluation. Adv Med Sci 2024; 69:368-376. [PMID: 39047970 DOI: 10.1016/j.advms.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Hypoxia in the tumor core negatively affects the outcome of patients with head and neck squamous cell carcinoma (HNSCC). Nevertheless, its role in predicting treatment response requires further exploration. Typically, reduced oxygen levels in the tumor core correlate with diminished efficacy of radiotherapy, chemotherapy, and immunotherapy, which are commonly used for HNSCC patients' treatment. Understanding the mechanistic underpinnings of these varied treatment responses in HNSCC is crucial for enhancing therapeutic outcomes and extending patients' overall survival (OS) rates. Standard monolayer cell culture conditions have major limitations in mimicking tumor physiological features and the complexity of the tumor microenvironment. Three-dimensional (3D) cell cultures enable the recreation of the in vivo tumor attributes, encompassing oxygen and nutrient gradients, cellular morphology, and intracellular connections. It is vital to use the 3D model in treatment response studies to mimic the tumor microenvironment, as evidenced by the decreased sensitivity of 3D structures to anticancer therapy. Accordingly, the aim of the study was to delineate the utility of the 3D models of hypoxic head and neck tumors in drug screening and treatment response studies.
Collapse
Affiliation(s)
- Julia Ostapowicz
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Kamila Ostrowska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland; Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria M Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
4
|
Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021; 11:749496. [PMID: 34733787 PMCID: PMC8558533 DOI: 10.3389/fonc.2021.749496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, radiation medicine is currently focused on the precise delivery of highly conformal radiation treatments. However, the tremendous developments in targeted therapy are yet to fulfill their full promise and arguably have the potential to dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly profile tumors both at diagnosis and at relapse and the co-incident progress in the field of radiogenomics could potentially pave the way for a more personalized approach to radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials to date have shown an improved clinical outcome when combining targeted agents with radiation therapy, however, most have failed to show benefit, which is arguably due to limited preclinical data. Several key molecular pathways could theoretically enhance therapeutic effect of radiation when rationally targeted either by directly enhancing tumor cell kill or indirectly through the abscopal effect of radiation when combined with novel immunotherapies. The timing of combining molecular targeted therapy with radiation is also important to determine and could greatly affect the outcome depending on which pathway is being inhibited.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nayela N Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ryan Rhome
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|