1
|
Tarapara B, Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer 2025; 25:650. [PMID: 40205351 PMCID: PMC11984277 DOI: 10.1186/s12885-025-14082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND DNA damage repair pathway genes are key components for maintaining genomic stability and are mainly associated with hereditary breast and ovarian cancer. METHODS The present study aimed to investigate the gene expression profile of DNA damage repair pathway genes, including BRCA1, BRCA2, ATM, TP53, CHEK2, MRE11, RAD50, BARD1, PALB2, and NBN, in hereditary breast and ovarian cancer patients using quantitative real-time PCR. RESULTS The study showed significant upregulation of most DNA damage repair genes in HBOC patients compared to controls, except MRE11, which was downregulated. Receiver operating characteristic (ROC) curve analysis revealed that MRE11 (p < 0.001), BRCA1 (p < 0.001), BRCA2 (p < 0.001), and PALB2 (p < 0.001) can be used as potential diagnostic biomarkers for hereditary breast and ovarian cancer. Spearman correlation analysis showed that RAD50 was significantly associated with the BRCA1/2 mutation status (p = 0.05). Furthermore, bivariate analysis revealed a strong positive correlation between BARD1 gene expression and the expression of BRCA1, PALB2, and NBN genes. Kaplan-Meier survival analysis showed that reduces expression of the MRE11 gene was associated with better overall survival. CONCLUSIONS The study findings may lead to a better understanding of the molecular mechanisms underlying hereditary breast and ovarian cancer, suggesting its role as a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Life-Science, Gujarat University and Young Scientist (DHR-ICMR), Molecular Diagnostic & Research Lab-3, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky Shah
- Department of Cancer Biology, Molecular Diagnostic & Research Lab- 3, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
2
|
Qaed E, Liu W, Almoiliqy M, Mohamed R, Tang Z. Unleashing the potential of Genistein and its derivatives as effective therapeutic agents for breast cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3321-3343. [PMID: 39549063 DOI: 10.1007/s00210-024-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Genistein (Gen), a phytoestrogen soy isoflavone, has emerged as a promising agent in the prevention and treatment of breast cancer due to its ability to function as a natural selective estrogen receptor modulator (SERM). This review explores the multifaceted mechanisms through which Gen and its derivatives exert their anticancer effects, including modulation of the PI3K/Akt signaling pathway, regulation of apoptosis, inhibition of angiogenesis, and impacts on DNA methylation and enzyme functions. We discuss the dual roles of Gen in both enhancing and inhibiting estrogen receptor (ER)-dependent pathways., highlighting its complex interactions with ERα and ERβ. Furthermore, the review examines the synergistic effect of combining Gen with conventional chemotherapeutic agents such as doxorubicin, cisplatin, and selenium, as well as other natural compounds like lycopene. Clinical studies suggest that while isoflavones may not significantly influence breast cancer progression in general, the high consumption of soy isoflavones is associated with reduced recurrence rates in breast cancer survivors. Importantly, Gen's ability to modulate key signaling pathways and enhance the efficacy of existing treatments improves its potential as a valuable adjunct in breast cancer therapy. In conclusion, Gen and its derivatives offer a novel and promising approach for treatment of breast cancer. Continued research into their mechanisms of action and clinical applications will be essential in optimizing their therapeutic potential and translating these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wu Liu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Marwan Almoiliqy
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Rawan Mohamed
- College of Clinical Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
| |
Collapse
|
3
|
De K, Jana M, Chowdhury B, Calaf GM, Roy D. Role of PARP Inhibitors: A New Hope for Breast Cancer Therapy. Int J Mol Sci 2025; 26:2773. [PMID: 40141415 PMCID: PMC11942994 DOI: 10.3390/ijms26062773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Tumors formed by the unchecked growth of breast cells are known as breast cancer. The second most frequent cancer in the world is breast cancer. It is the most common cancer among females. In 2022, 2,296,840 women were diagnosed with breast cancer. The therapy of breast cancer is evolving through the development of Poly (ADP-ribose) polymerase (PARP) inhibitors, which are offering people with specific genetic profiles new hope as research into the disease continues. It focuses on patients with BRCA1 and BRCA2 mutations. This review summarizes the most recent research on the mechanisms of action of PARP inhibitors and their implications for breast cancer therapy. We review how therapeutic applications are developing and highlight recent studies showing the effectiveness of these medicines whether used alone or in combination. Furthermore, the significance of customized therapy is highlighted in enhancing patient outcomes as we address the function of genetic testing in identifying candidates for PARP inhibition. Recommendations for future research areas to maximize the therapeutic potential of PARP inhibitors are also included, along with challenges and limits in their clinical usage. The objective of this review is to improve our comprehension of the complex interaction between breast cancer biology and PARP inhibition. This knowledge will help to guide screening approaches, improve clinical practice, and support preventive initiatives for people at risk.
Collapse
Affiliation(s)
- Kamalendu De
- Department of Biological Sciences (Botany), Midnapore City College, Midnapore 721129, West Bengal, India;
| | - Malabendu Jana
- Department of Neurological Science, Rush University School of Medicine, Chicago, IL 773, USA;
| | - Bhabadeb Chowdhury
- HIV Dynamics and Replication Program, National Institute of Health, Frederick, MD 21702, USA;
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of The City University of New York, Bronx, NY 718, USA;
| |
Collapse
|
4
|
Horak J, Vallusova D, Cumova A, Holy P, Vodicka P, Opattova A. Inhibition of homologous recombination repair by Mirin in ovarian cancer ameliorates carboplatin therapy response in vitro. Mutagenesis 2025; 40:87-95. [PMID: 38099488 DOI: 10.1093/mutage/gead036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 03/18/2025] Open
Abstract
Chemoresistance poses one of the most significant challenges of cancer therapy. Carboplatin (CbPt) is one of the most used chemotherapeutics in ovarian cancer (OVC) treatment. MRE11 constitutes a part of homologous recombination (HR), which is responsible for the repair of CbPt-induced DNA damage, particularly DNA crosslinks. The study's main aim was to address the role of HR in CbPt chemoresistance in OVC and to evaluate the possibility of overcoming CbPt chemoresistance by Mirin-mediated MRE11 inhibition in an OVC cell line. Lower expression of MRE11 was associated with better overall survival in a cohort of OVC patients treated with platinum drugs (TCGA dataset, P < 0.05). Using in vitro analyses, we showed that the high expression of HR genes drives the CbPt chemoresistance in our CbPt-resistant cell line model. Moreover, the HR inhibition by Mirin not only increased sensitivity to carboplatin (P < 0.05) but also rescued the sensitivity in the CbPt-resistant model (P < 0.05). Our results suggest that MRE11 inhibition with Mirin may represent a promising way to overcome OVC resistance. More therapy options will ultimately lead to better personalized cancer therapy and improvement of patients' survival.
Collapse
Affiliation(s)
- Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | | | - Andrea Cumova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Petr Holy
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|
5
|
Shahab M, Waqas M, Fahira A, Sharma BP, Zhang H, Zheng G, Huang Z. Machine learning-based screening and molecular simulations for discovering novel PARP-1 inhibitors targeting DNA repair mechanisms for breast cancer therapy. Mol Divers 2025:10.1007/s11030-025-11119-4. [PMID: 39899126 DOI: 10.1007/s11030-025-11119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Cancer remains one of the leading causes of death worldwide, with the rising incidence of breast cancer being a significant public health concern. Poly (ADP-ribose) polymerase-1 (PARP-1) has emerged as a promising therapeutic target for breast cancer treatment due to its crucial role in DNA repair. This study aimed to discover novel, targeted, and non-toxic PARP-1 inhibitors using an integrated approach that combines machine learning-based screening, molecular docking simulations, and quantum mechanical calculations. We trained a widely used machine learning models, Random Forest, using bioactivity data from known PARP-1 inhibitors. After evaluating the performance, it was used to screen an FDA-approved drug library, successfully identifying Atazanavir, Brexpiprazole, Raltegravir, and Nisoldipine as potential PARP-1 inhibitors. These compounds were further validated through molecular docking and all-atom molecular dynamics simulations, highlighting their potential for breast cancer therapy. The binding free energies indicated that Atazanavir at - 41.86 kJ/mol and Brexpiprazole at - 45.44 kJ/mol exhibited superior binding affinity compared to the control drug at - 30.42 kJ/mol, highlighting their promise as candidates for breast cancer therapy. Subsequent optimized geometries and electron density mappings of the two molecular structures revealed a Gibbs free energy of - 2334.610 Ha for the first molecule and - 1682.278316 Ha for the second, confirming enhanced stability compared to the standard drug. This study not only highlights the efficacy of machine learning in drug discovery but also underscores the importance of quantum mechanics in validating molecular stability, setting a robust foundation for future pharmacological explorations. Additionally, this approach could revolutionize the drug repurposing process by significantly reducing the time and cost associated with traditional drug development methods. Our results establish a promising basis for subsequent research aimed at optimizing these PARP-1 inhibitors for clinical use, potentially offering more effective treatment options for breast cancer patients.
Collapse
Affiliation(s)
- Muhammad Shahab
- Dongguan Key Laboratory of Computer-Aided Drug Design, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
- Guangdong Medical University Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Provincial Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Muhammad Waqas
- Dongguan Key Laboratory of Computer-Aided Drug Design, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
- Guangdong Medical University Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Provincial Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Aamir Fahira
- Dongguan Key Laboratory of Computer-Aided Drug Design, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
- Guangdong Medical University Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Provincial Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Bharat Prasad Sharma
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoke Zhang
- Dongguan Key Laboratory of Computer-Aided Drug Design, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zunnan Huang
- Dongguan Key Laboratory of Computer-Aided Drug Design, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
- Guangdong Medical University Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Provincial Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
6
|
Ben Diouf O, Gilbert A, Bernay B, Syljuåsen RG, Tudor M, Temelie M, Savu DI, Soumboundou M, Sall C, Chevalier F. Phospho-Proteomics Analysis of Early Response to X-Ray Irradiation Reveals Molecular Mechanism Potentially Related to U251 Cell Radioresistance. Proteomes 2024; 13:1. [PMID: 39846632 PMCID: PMC11755531 DOI: 10.3390/proteomes13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Glioblastoma (GBM) is a devastating malignant brain tumor with a poor prognosis. GBM is associated with radioresistance. Post-translational modifications (PTMs) such as protein phosphorylation can play an important role in the cellular response to radiation. To better understand the early cellular activities after radiation in GBM, we carried out a phospho-proteomic study on the U251 cell line 3 h after X-ray irradiation (6Gy) and on non-irradiated cells. Our study showed a strong modification of proteoform phosphorylation in response to radiation. We found 453 differentially expressed phosphopeptides (DEPs), with 211 being upregulated and 242 being downregulated. A GO enrichment analysis of DEPs showed a strong enrichment of the signaling pathways involved in DNA damage response after irradiation and categorized them into biological processes (BPs), cellular components (CCs) and molecular functions (MFs). Certain accessions such as BRCA1, MDC1, H2AX, MDC1, TP53BP1 were dynamically altered in our fraction and are highly associated with the signaling pathways enriched after radiation.
Collapse
Affiliation(s)
- Ousseynou Ben Diouf
- Mixed Research Exploration and Diagnosis (UMRED), UFR-Healthy, Iba Der THIAM University of Thies, Thies BP A967, Senegal; (O.B.D.)
| | - Antoine Gilbert
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN, Université de Caen Normandie, 14000 Caen, France
| | - Benoit Bernay
- Proteogen Platform, US EMerode, CAEN Normandie University, 14032 Caen, France
| | - Randi G. Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Mihaela Tudor
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania (D.I.S.)
| | - Mihaela Temelie
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania (D.I.S.)
| | - Diana I. Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania (D.I.S.)
| | - Mamadou Soumboundou
- Mixed Research Exploration and Diagnosis (UMRED), UFR-Healthy, Iba Der THIAM University of Thies, Thies BP A967, Senegal; (O.B.D.)
| | - Cheikh Sall
- Mixed Research Exploration and Diagnosis (UMRED), UFR-Healthy, Iba Der THIAM University of Thies, Thies BP A967, Senegal; (O.B.D.)
| | - François Chevalier
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN, Université de Caen Normandie, 14000 Caen, France
| |
Collapse
|
7
|
Zetrini AE, Abbasi AZ, He C, Lip H, Alradwan I, Rauth AM, Henderson JT, Wu XY. Targeting DNA damage repair mechanism by using RAD50-silencing siRNA nanoparticles to enhance radiotherapy in triple negative breast cancer. Mater Today Bio 2024; 28:101206. [PMID: 39221201 PMCID: PMC11364914 DOI: 10.1016/j.mtbio.2024.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Radiotherapy (RT) is one of major therapeutic modalities in combating breast cancer. In RT, ionizing radiation is employed to induce DNA double-strand breaks (DSBs) as a primary mechanism that causes cancer cell death. However, the induced DNA damage can also trigger the activation of DNA repair mechanisms, reducing the efficacy of RT treatment. Given the pivotal role of RAD50 protein in the radiation-responsive DNA repair pathways involving DSBs, we developed a novel polymer-lipid based nanoparticle formulation containing RAD50-silencing RNA (RAD50-siRNA-NPs) and evaluated its effect on the RAD50 downregulation as well as cellular and tumoral responses to ionizing radiation using human triple-negative breast cancer as a model. The RAD50-siRNA-NPs successfully preserved the activity of the siRNA, facilitated its internalization by cancer cells via endocytosis, and enabled its lysosomal escape. The nanoparticles significantly reduced RAD50 expression, whereas RT alone strongly increased RAD50 levels at 24 h. Pretreatment with RAD50-siRNA-NPs sensitized the cancer cells to RT with ∼2-fold higher level of initial DNA DSBs as determined by a γH2AX biomarker and a 2.5-fold lower radiation dose to achieve 50 % colony reduction. Intratumoral administration of RAD50-siRNA-NPs led to a remarkable 53 % knockdown in RAD50. The pretreatment with RAD50-siRNA-NPs followed by RT resulted in approximately a 2-fold increase in DNA DSBs, a 4.5-fold increase in cancer cell apoptosis, and 2.5-fold increase in tumor growth inhibition compared to RT alone. The results of this work demonstrate that RAD50 silencing by RAD50-siRNA-NPs can disrupt RT-induced DNA damage repair mechanisms, thereby significantly enhancing the radiation sensitivity of TNBC MDA-MB-231 cells in vitro and in orthotopic tumors as measured by colony forming and tumor regrowth assays, respectively.
Collapse
Affiliation(s)
- Abdulmottaleb E. Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Azhar Z. Abbasi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Andrew M. Rauth
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey T. Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| |
Collapse
|
8
|
Xiong N, Wu H, Yu Z. Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies. Front Oncol 2024; 14:1405491. [PMID: 38863622 PMCID: PMC11165151 DOI: 10.3389/fonc.2024.1405491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges in oncology due to its aggressive nature, limited treatment options, and poorer prognosis compared to other breast cancer subtypes. This comprehensive review examines the therapeutic and diagnostic landscape of TNBC, highlighting current strategies, emerging therapies, and future directions. Targeted therapies, including PARP inhibitors, immune checkpoint inhibitors, and EGFR inhibitors, hold promise for personalized treatment approaches. Challenges in identifying novel targets, exploring combination therapies, and developing predictive biomarkers must be addressed to optimize targeted therapy in TNBC. Immunotherapy represents a transformative approach in TNBC treatment, yet challenges in biomarker identification, combination strategies, and overcoming resistance persist. Precision medicine approaches offer opportunities for tailored treatment based on tumor biology, but integration of multi-omics data and clinical implementation present challenges requiring innovative solutions. Despite these challenges, ongoing research efforts and collaborative initiatives offer hope for improving outcomes and advancing treatment strategies in TNBC. By addressing the complexities of TNBC biology and developing effective therapeutic approaches, personalized treatments can be realized, ultimately enhancing the lives of TNBC patients. Continued research, clinical trials, and interdisciplinary collaborations are essential for realizing this vision and making meaningful progress in TNBC management.
Collapse
Affiliation(s)
- Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Meizhou Municipal Engineering and Technology Research Centre for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, China
| | - Zhikang Yu
- Research Experiment Centre, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Engineering Technological Research Centre of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
9
|
Chen W, Kang Y, Sheng W, Huang Q, Cheng J, Pei S, Meng Y. A new 4-gene-based prognostic model accurately predicts breast cancer prognosis and immunotherapy response by integrating WGCNA and bioinformatics analysis. Front Immunol 2024; 15:1331841. [PMID: 38370403 PMCID: PMC10869553 DOI: 10.3389/fimmu.2024.1331841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background Breast cancer (BRCA) is a common malignancy in women, and its resistance to immunotherapy is a major challenge. Abnormal expression of genes is important in the occurrence and development of BRCA and may also affect the prognosis of patients. Although many BRCA prognosis model scores have been developed, they are only applicable to a limited number of disease subtypes. Our goal is to develop a new prognostic score that is more accurate and applicable to a wider range of BRCA patients. Methods BRCA patient data from The Cancer Genome Atlas database was used to identify breast cancer-related genes (BRGs). Differential expression analysis of BRGs was performed using the 'limma' package in R. Prognostic BRGs were identified using co-expression and univariate Cox analysis. A predictive model of four BRGs was established using Cox regression and the LASSO algorithm. Model performance was evaluated using K-M survival and receiver operating characteristic curve analysis. The predictive ability of the signature in immune microenvironment and immunotherapy was investigated. In vitro experiments validated POLQ function. Results Our study identified a four-BRG prognostic signature that outperformed conventional clinicopathological characteristics in predicting survival outcomes in BRCA patients. The signature effectively stratified BRCA patients into high- and low-risk groups and showed potential in predicting the response to immunotherapy. Notably, significant differences were observed in immune cell abundance between the two groups. In vitro experiments demonstrated that POLQ knockdown significantly reduced the viability, proliferation, and invasion capacity of MDA-MB-231 or HCC1806 cells. Conclusion Our 4-BRG signature has the potential as an independent biomarker for predicting prognosis and treatment response in BRCA patients, complementing existing clinicopathological characteristics.
Collapse
Affiliation(s)
- Wenlong Chen
- Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yakun Kang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenyi Sheng
- Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qiyan Huang
- Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jiale Cheng
- Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - You Meng
- Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
10
|
Calheiros J, Raimundo L, Morais J, Matos AC, Minuzzo SA, Indraccolo S, Sousa E, da Silva MC, Saraiva L. Antitumor Activity of the Xanthonoside XGAc in Triple-Negative Breast, Ovarian and Pancreatic Cancer by Inhibiting DNA Repair. Cancers (Basel) 2023; 15:5718. [PMID: 38136266 PMCID: PMC10741784 DOI: 10.3390/cancers15245718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Dysregulation of the DNA damage response may contribute to the sensitization of cancer cells to DNA-targeting agents by impelling cell death. In fact, the inhibition of the DNA repair pathway is considered a promising anticancer therapeutic strategy, particularly in combination with standard-of-care agents. The xanthonoside XGAc was previously described as a potent inhibitor of cancer cell growth. Herein, we explored its antitumor activity against triple-negative breast cancer (TNBC), ovarian cancer and pancreatic ductal adenocarcinoma (PDAC) cells as a single agent and in combination with the poly(ADP-ribose) polymerase inhibitor (PARPi) olaparib. We demonstrated that XGAc inhibited the growth of TNBC, ovarian and PDAC cells by inducing cell cycle arrest and apoptosis. XGAc also induced genotoxicity, inhibiting the expression of DNA repair proteins particularly involved in homologous recombination, including BRCA1, BRCA2 and RAD51. Moreover, it displayed potent synergistic effects with olaparib in TNBC, ovarian cancer and PDAC cells. Importantly, this growth inhibitory activity of XGAc was further reinforced in a TNBC spheroid model and in patient-derived ovarian cancer cells. Also, drug-resistant cancer cells showed no cross-resistance to XGAc. Additionally, the ability of XGAc to prevent cancer cell migration was evidenced in TNBC, ovarian cancer and PDAC cells. Altogether, these results highlight the great potential of acetylated xanthonosides such as XGAc as promising anticancer agents against hard-to-treat cancers.
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (J.C.); (L.R.); (J.M.); (A.C.M.)
| | - Liliana Raimundo
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (J.C.); (L.R.); (J.M.); (A.C.M.)
| | - João Morais
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (J.C.); (L.R.); (J.M.); (A.C.M.)
| | - Ana Catarina Matos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (J.C.); (L.R.); (J.M.); (A.C.M.)
| | - Sonia Anna Minuzzo
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.A.M.); (S.I.)
| | - Stefano Indraccolo
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.A.M.); (S.I.)
- Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (E.S.); (M.C.d.S.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixôes, 4450-208 Matosinhos, Portugal
| | - Marta Correia da Silva
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (E.S.); (M.C.d.S.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixôes, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (J.C.); (L.R.); (J.M.); (A.C.M.)
| |
Collapse
|
11
|
Huang L, Long Q, Su Q, Zhu X, Long X. Aflatoxin B1-DNA adducts modify the effects of post-operative adjuvant transarterial chemoembolization improving hepatocellular carcinoma prognosis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:780-792. [PMID: 37711588 PMCID: PMC10497403 DOI: 10.37349/etat.2023.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023] Open
Abstract
Aim DNA damage involves in the carcinogenesis of some cancer and may act as a target for therapeutic intervention of cancers. However, it is unclear whether aflatoxin B1 (AFB1)-DNA adducts (ADAs), an important kind of DNA damage caused by AFB1, affect the efficiency of post-operative adjuvant transarterial chemoembolization (po-TACE) treatment improving hepatocellular carcinoma (HCC) survival. Methods A hospital-based retrospective study, including 318 patients with Barcelona Clinic Liver Cancer (BCLC)-C stage HCC from high AFB1 exposure areas, to investigate the potential effects of ADAs in the tissues with HCC on po-TACE treatment. The amount of ADAs in the cancerous tissues was tested by competitive enzyme-linked immunosorbent assay (c-ELISA). Results Among these patients with HCC, the average amount of ADAs was 3.00 µmol/mol ± 1.51 µmol/mol DNA in their tissues with cancer. For these patients, increasing amount of ADAs was significantly associated with poorer overall survival (OS) and tumor reoccurrence-free survival (RFS), with corresponding death risk (DR) of 3.69 (2.78-4.91) and tumor recurrence risk (TRR) of 2.95 (2.24-3.88). The po-TACE therapy can efficiently improve their prognosis [DR = 0.59 (0.46-0.76), TRR = 0.63 (0.49-0.82)]. Interestingly, this improving role was more noticeable among these patients with high ADAs [DR = 0.36 (0.24-0.53), TRR = 0.40 (0.28-0.59)], but not among those with low ADAs (P > 0.05). Conclusions These results suggest that increasing ADAs in the cancerous tissues may be beneficial for po-TACE in ameliorating the survival of patients with HCC.
Collapse
Affiliation(s)
- Liyan Huang
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Departement of Pathology, Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qinqin Long
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qunying Su
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xiaoying Zhu
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xidai Long
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
12
|
Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: Emerging opportunities by targeting BRCAs and p53. Biochim Biophys Acta Rev Cancer 2023; 1878:188914. [PMID: 37201730 DOI: 10.1016/j.bbcan.2023.188914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic cancer (PC) is characterized by (epi)genetic and microenvironmental alterations that negatively impact the treatment outcomes. New targeted therapies have been pursued to counteract the therapeutic resistance in PC. Aiming to seek for new therapeutic options for PC, several attempts have been undertaken to exploit BRCA1/2 and TP53 deficiencies as promising actionable targets. The elucidation of the pathogenesis of PC highlighted the high prevalence of p53 mutations and their connection with the aggressiveness and therapeutic resistance of PC. Additionally, PC is associated with dysfunctions in several DNA repair-related genes, including BRCA1/2, which sensitize tumours to DNA-damaging agents. In this context, poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) were approved for mutant BRCA1/2 PC patients. However, acquired drug resistance has become a major drawback of PARPi. This review emphasizes the importance of targeting defective BRCAs and p53 pathways for advancing personalized PC therapy, with particular focus on how this approach may provide an opportunity to tackle PC resistance.
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Tanushi X, Pinna G, Vandamme M, Siberchicot C, D’Augustin O, Di Guilmi AM, Radicella JP, Castaing B, Smith R, Huet S, Leteurtre F, Campalans A. OGG1 competitive inhibitors show important off-target effects by directly inhibiting efflux pumps and disturbing mitotic progression. Front Cell Dev Biol 2023; 11:1124960. [PMID: 36819096 PMCID: PMC9936318 DOI: 10.3389/fcell.2023.1124960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation. Cancer cells are particularly exposed to ROS, thus challenging their capacity to process oxidative DNA damage has been proposed as a promising therapeutic strategy for cancer treatment. Two competitive inhibitors of OGG1 (OGG1i) have been identified, TH5487 and SU0268, which bind to the OGG1 catalytic pocket preventing its fixation to the DNA. Early studies with these inhibitors show an enhanced cellular sensitivity to cytotoxic drugs and a reduction in the inflammatory response. Our study uncovers two unreported off-targets effects of these OGG1i that are independent of OGG1. In vitro and in cellulo approaches have unveiled that OGG1i TH5487 and SU0268, despite an unrelated molecular structure, are able to inhibit some members of the ABC family transporters, in particular ABC B1 (MDR1) and ABC G2 (BCRP). The inhibition of these efflux pumps by OGG1 inhibitors results in a higher intra-cellular accumulation of various fluorescent probes and drugs, and largely contributes to the enhanced cytotoxicity observed when the inhibitors are combined with cytotoxic agents. Furthermore, we found that SU0268 has an OGG1-independent anti-mitotic activity-by interfering with metaphase completion-resulting in a high cellular toxicity. These two off-target activities are observed at concentrations of OGG1i that are normally used for in vivo studies. It is thus critical to consider these previously unreported non-specific effects when interpreting studies using TH5487 and SU0268 in the context of OGG1 inhibition. Additionally, our work highlights the persistent need for new specific inhibitors of the enzymatic activity of OGG1.
Collapse
Affiliation(s)
- Xhaferr Tanushi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Guillaume Pinna
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie Vandamme
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Capucine Siberchicot
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Ostiane D’Augustin
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Anne-Marie Di Guilmi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - J. Pablo Radicella
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM)UPR4301 CNRS, Université d’Orléans, Orléans, France
| | - Rebecca Smith
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Sebastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France,Institut Universitaire de France, Paris, France
| | - François Leteurtre
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Anna Campalans
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,*Correspondence: Anna Campalans,
| |
Collapse
|
14
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
15
|
Lieb V, Abdulrahman A, Weigelt K, Hauch S, Gombert M, Guzman J, Bellut L, Goebell PJ, Stöhr R, Hartmann A, Wullich B, Taubert H, Wach S. Cell-Free DNA Sequencing Reveals Gene Variants in DNA Damage Repair Genes Associated with Prognosis of Prostate Cancer Patients. Cells 2022; 11:cells11223618. [PMID: 36429046 PMCID: PMC9688453 DOI: 10.3390/cells11223618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
In the present study, we further analyzed the data obtained in our previous study, where we investigated the cell-free DNA (cfDNA) of 34 progressive prostate cancer patients via targeted sequencing. Here, we studied the occurrence and prognostic impact of sequence variants according to their clinical pathological significance (CPS) or their functional impact (FI) in 23 DNA damage repair (DDR) genes with a focus on the ATM serine/threonine kinase gene (ATM). All patients had at least one DDR gene with a CPS or FI variant. Kaplan-Meier analysis indicated that the group with a higher number of CPS variants in DDR genes had a shorter time to treatment change (TTC) compared to the group with a lower number of CPS variants (p = 0.038). Analysis of each DDR gene revealed that CPS variants in the ATM gene and FI variants in the nibrin (NBN) gene showed a shorter TTC (p = 0.034 and p = 0.042). In addition, patients with CPS variants in the ATM gene had shorter overall survival (OS; p = 0.022) and disease-specific survival (DSS; p = 0.010) than patients without these variants. Interestingly, patients with CPS variants in seven DDR genes possessed a better OS (p = 0.008) and DSS (p = 0.009), and patients with FI variants in four DDR genes showed a better OS (p = 0.007) and DSS (p = 0.008). Together, these findings demonstrated that the analysis of cfDNA for gene variants in DDR genes provides prognostic information that may be helpful for future temporal and targeted treatment decisions for advanced PCa patients.
Collapse
Affiliation(s)
- Verena Lieb
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Amer Abdulrahman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | | | | | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura Bellut
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Peter J. Goebell
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Robert Stöhr
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-93138523373
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
16
|
Ahmed S, Alam W, Aschner M, Alsharif KF, Albrakati A, Saso L, Khan H. Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy. Biomed Pharmacother 2022; 155:113797. [PMID: 36271573 PMCID: PMC9590097 DOI: 10.1016/j.biopha.2022.113797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer is one of the most severe medical conditions in the world, causing millions of deaths each year. Chemotherapy and radiotherapy are critical for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer requires novel efficacious treatment modalities. Natural remedies offer feasible alternative options against malignancy in contrast to available synthetic medication. Selective killing of cancer cells is privileged mainstream in cancer treatment, and targeted therapy represents the new tool with the potential to pursue this aim. The discovery of innovative therapies targeting essential components of DNA damage signaling and repair pathways such as ataxia telangiectasia mutated and Rad3 related Checkpoint kinase 1 (ATR-CHK1)has offered a possibility of significant therapeutic improvement in oncology. The activation and inhibition of this pathway account for chemopreventive and chemotherapeutic activity, respectively. Targeting this pathway can also aid to overcome the resistance of conventional chemo- or radiotherapy. This review enlightens the anticancer role of natural products by ATR-CHK1 activation and inhibition. Additionally, these compounds have been shown to have chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Ideally, this review will trigger interest in natural products targeting ATR-CHK1 and their potential efficacy and safety as cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue Bronx, NY 10461, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza University, Rome 00185, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
17
|
Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14184474. [PMID: 36139634 PMCID: PMC9496913 DOI: 10.3390/cancers14184474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Poly (adenosine diphosphate ribose) polymerase inhibitors (PARPis) have demonstrated antitumoral activity in several cancers harbouring germline and somatic BRCA1/2 mutations. The widespread use of these agents in clinical practice is restricted by the development of acquired resistance due to the presence of compensatory pathways. A strategy to deal with this is the use of combination therapies with drugs that act synergistically against the tumour. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. However, this strategy is hampered by the poor pharmacokinetic profile and short half-life of BETis. In this work and as a proof of concept, we discuss the potential preclinical benefit provided by the combination of the PARPi olaparib and the BET inhibitor JQ1 encapsulated into nanoparticles for the treatment of BRCAness tumours. Abstract BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.
Collapse
|
18
|
Gou R, Li X, Dong H, Hu Y, Liu O, Liu J, Lin B. RAD21 Confers Poor Prognosis and Affects Ovarian Cancer Sensitivity to Poly(ADP-Ribose)Polymerase Inhibitors Through DNA Damage Repair. Front Oncol 2022; 12:936550. [PMID: 35860572 PMCID: PMC9289200 DOI: 10.3389/fonc.2022.936550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Poly(ADP-ribose)polymerase (PARP) inhibitors are a class of molecular-targeted cancer drugs. Synthetic lethality is a phenomenon that renders homologous recombination repair defective cells more sensitive to PARP inhibitors. As a component of the cohesin complex, RAD21 regulates DNA damage repair. However, the biological roles of RAD21 in ovarian cancer and their underlying mechanisms remain unclear. Methods An immunohistochemical assay was used to validate the expression of RAD21 in ovarian cancer and its correlation with prognosis. The effects of RAD21 were evaluated through Cell Counting Kit-8 (CCK8), wound-healing, and invasion assays in vitro and the tumor growth in vivo. Furthermore, CCK8 assay and immunofluorescence assay were used to detect the effect of RAD21 on cell sensitivity to PARP inhibitors and their mechanism. The pathway changes were detected by Western blotting. Results RAD21 was markedly upregulated in ovarian cancer samples. High RAD21 expression was correlated with poor differentiation and poor prognosis in patients with ovarian cancer. Functionally, RAD21 overexpression promoted cancer cell proliferation, migration, and invasion. Moreover, RAD21 knockdown increased the sensitivity of ovarian cancer cells to three kinds of PARP inhibitors by affecting DNA damage repair. In vivo experiments indicated that RAD21 promoted tumor growth. Mechanistically, the overexpression of RAD21 led to increased phosphorylation levels of Akt and mTOR. Blocking the Akt/mTOR signaling pathway reversed RAD21 overexpression-induced cancer progression and drug resistance. Conclusions RAD21 can serve as a valuable prognostic marker for ovarian cancer and has the potential as a therapeutic target that can expand the utility of PARP inhibitors.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
- *Correspondence: Bei Lin,
| |
Collapse
|