1
|
Hu WT, Li M, Ma PJ, Yang D, Liu XD, Wang Y. A silence catalyst: CCL5-mediated intercellular communication in cancer. Arch Toxicol 2025:10.1007/s00204-025-04036-w. [PMID: 40167774 DOI: 10.1007/s00204-025-04036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Chemokine CCL5 (RANTES), as a key mediator of intercellular communication in cancers, and its role in cancer development, metastasis and immune escape has received increasing attention. CCL5 and its receptors are important components of the tumor microenvironment and play a tumor promoting role in different ways by triggering signaling pathways through binding to the primary receptor CCR5. CCL5 was viewed as indispensable "gate keepers" of immunity and inflammation, it remains unclear of CCL5-mediated intercellular communication. Therefore, in this review, we summarize the latest information on the origin, structure, and characterization of CCL5 and role of CCL5 in the tumor microenvironment. It includes CCL5-mediated intercellular communication through exosomes, microvesicles and others in breast, lung, and ovarian cancers. CCL5 has a multifaceted role in cancer and has potential applications as a biomarker for cancer diagnosis and prognosis, which provides theoretical bases and therapeutic targets for the development of new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Wei-Ting Hu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pei-Jun Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ding Yang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xiao-Dong Liu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
2
|
Samaha J, Madhu S, Shehadeh LA, Martinez CA. Osteopontin as a potential mediator of inflammation in HIV and comorbid conditions. AIDS 2025; 39:483-495. [PMID: 40080169 DOI: 10.1097/qad.0000000000004112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 03/15/2025]
Abstract
INTRODUCTION Approximately 39 million people live with HIV globally, with 1.3 million new infections annually. Despite improved treatment, noncommunicable diseases (NCDs) such as cardiovascular disease (CVD), neurological disorders, chronic kidney disease (CKD), and cancer are now the leading causes of death among people with HIV (PWH). Osteopontin (OPN) has emerged as a notable mediator in the inflammatory response to HIV and related NCDs. Our aim is to review the current understanding of OPN's role in HIV-related inflammatory pathways to highlight potential therapeutic avenues for improved treatment and mitigation of comorbidities. METHODS We conducted a systematic review by searching relevant literature using specific keywords related to HIV, osteopontin, cardiovascular disease, inflammation, neurological disorders, cancer, and chronic kidney disease. The collected studies were organized and categorized by key themes, followed by a comprehensive analysis to identify patterns and draw conclusions regarding OPN's role in HIV-associated comorbidities. RESULTS The intricate interactions between OPN, its isoforms, and HIV-related illnesses suggest that OPN can exhibit both pro-inflammatory and anti-inflammatory roles, depending on the stage of the disease and the specific cell type involved. Its functions are diverse throughout the progression of HIV and its associated comorbidities, including CVD, CKD, cancer, and neurological disorders. CONCLUSION OPN's effects on the disease progression of HIV and related NCDs are highly variable due to its diverse functions. Therefore, further research is essential to fully understand its complex roles before considering OPN as a therapeutic target for HIV and its comorbidities.
Collapse
Affiliation(s)
- Jacklyn Samaha
- Department of Medicine
- Department of Public Health Sciences, University of Miami Miller School of Medicine
| | - Shashank Madhu
- Department of Medicine
- Department of Public Health Sciences, University of Miami Miller School of Medicine
| | - Lina A Shehadeh
- Department of Medicine
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
3
|
Li J, Yu S, Rao M, Cheng B. Tumor-derived extracellular vesicles: key drivers of immunomodulation in breast cancer. Front Immunol 2025; 16:1548535. [PMID: 40103824 PMCID: PMC11914124 DOI: 10.3389/fimmu.2025.1548535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
Breast cancer (BC) remains a significant global health challenge characterized by its heterogeneity and treatment complexities. Extracellular vesicles (EVs) are small membranous particles released by cells, facilitating intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. Tumor-derived EVs have emerged as pivotal regulators in the tumor microenvironment (TME) and drivers of BC progression. These EVs carry diverse cargoes of bioactive molecules, influencing critical processes such as immune modulation, angiogenesis, and metastasis. By altering the behaviors of immune cells including macrophages, dendritic cells, and T cells, tumor-derived EVs contribute to immune evasion and tumor growth. Furthermore, Tumor-derived EVs play a role in mediating drug resistance, impacting the effectiveness of therapeutic interventions. Understanding the multifaceted roles of BC tumor-derived EVs is essential for the development of innovative therapeutic strategies. Targeting pathways mediated by EVs holds promise for enhancing the efficacy of cancer treatments and improving patient outcomes. This comprehensive review provides insights into the intricate interactions of tumor-derived EVs in immune modulation and BC progression, highlighting potential therapeutic targets and avenues for novel cancer therapies.
Collapse
Affiliation(s)
- Jieming Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Polysaccharides and Drugs, Henan Key Laboratory of Chinese Medicine, Zhengzhou, China
| | - Shuo Yu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Rao
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bomin Cheng
- Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
4
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024; 56:2365-2381. [PMID: 39528800 PMCID: PMC11612210 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024; 77:9-25. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
6
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
7
|
Gao L, Bai Y, Zhou J, Liang C, Dong Y, Han T, Liu Y, Guo J, Wu J, Hu D. S100P facilitates LUAD progression via PKA/c-Jun-mediated tumor-associated macrophage recruitment and polarization. Cell Signal 2024; 120:111179. [PMID: 38640980 DOI: 10.1016/j.cellsig.2024.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
S100P, a member of the S100 calcium-binding protein family, is closely associated with abnormal proliferation, invasion, and metastasis of various cancers. However, its role in the lung adenocarcinoma (LUAD) tumor microenvironment (TME) remains unclear. In this study, we observed specific expression of S100P on tumor cells in LUAD patients through tissue immunofluorescence analysis. Furthermore, this expression was strongly correlated with the recruitment and polarization of tumor-associated macrophages (TAMs). Bioinformatics analysis revealed that high S100P expression is associated with poorer overall survival in LUAD patients. Subsequently, a subcutaneous mouse model demonstrated that S100P promotes recruitment and polarization of TAMs towards the M2 type. Finally, in vitro studies on LUAD cells revealed that S100P enhances the secretion of chemokines and polarizing factors by activating the PKA/c-Jun pathway, which is implicated in TAM recruitment and polarization towards the M2 phenotype. Moreover, inhibition of c-Jun expression impedes the ability of TAMs to infiltrate and polarize towards the M2 phenotype. In conclusion, our study demonstrates that S100P facilitates LUAD cells growth by recruiting M2 TAMs through PKA/c-Jun signaling, resulting in the production of various cytokines. Considering these findings, S100P holds promise as an important diagnostic marker and potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yunjia Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
8
|
Roberts BK, Li DI, Somerville C, Matta B, Jha V, Steinke A, Brune Z, Blanc L, Soffer SZ, Barnes BJ. IRF5 suppresses metastasis through the regulation of tumor-derived extracellular vesicles and pre-metastatic niche formation. Sci Rep 2024; 14:15557. [PMID: 38969706 PMCID: PMC11226449 DOI: 10.1038/s41598-024-66168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Dan Iris Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Carter Somerville
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Vaishali Jha
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | | - Zarina Brune
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Lionel Blanc
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Samuel Z Soffer
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Department of Pediatric Surgery, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
9
|
Wang H, Wang R, Shen K, Huang R, Wang Z. Biological Roles and Clinical Applications of Exosomes in Breast Cancer: A Brief Review. Int J Mol Sci 2024; 25:4620. [PMID: 38731840 PMCID: PMC11083446 DOI: 10.3390/ijms25094620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.
Collapse
Affiliation(s)
| | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| |
Collapse
|
10
|
Shen HY, Xu JL, Zhang W, Chen QN, Zhu Z, Mao Y. Exosomal circRHCG promotes breast cancer metastasis via facilitating M2 polarization through TFEB ubiquitination and degradation. NPJ Precis Oncol 2024; 8:22. [PMID: 38287113 PMCID: PMC10825185 DOI: 10.1038/s41698-024-00507-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance. In the present study, exosomes were isolated from clinical specimens and TNBC cell lines. Colony formation, EdU incorporation, wound healing, and transwell assays were performed to examine TNBC cell proliferation, migration, and metastasis. Macrophage polarization was evaluated by flow cytometry and RT-qPCR analysis of polarization markers. A mouse model of subcutaneous tumor was established for assessment of tumor growth and metastasis. RNA pull-down, RIP and Co-IP assays were used for analyzing molecular interactions. Here, we proved that high abundance of circRHCG was observed in exosomes derived from TNBC patients, and increased exosomal circRHCG indicated poor prognosis. Silencing of circRHCG suppressed TNBC cell proliferation, migration, and metastasis. TNBC cell-derived exosomes promoted M2 polarization via delivering circRHCG. Exosomal circRHCG stabilized BTRC mRNA via binding FUS and naturally enhanced BTRC expression, thus promoting the ubiquitination and degradation of TFEB in THP-1 cells. In addition, knockdown of BTRC or overexpression of TFEB counteracted exosomal circRHCG-mediated facilitation of M2 polarization. Furthermore, exosomal circRHCG promoted TNBC cell proliferation and metastasis by facilitating M2 polarization. Knockdown of circRHCG reduced tumor growth, metastasis, and M2 polarization through the BTRC/TFEB axis in vivo. In summary, exosomal circRHCG promotes M2 polarization by stabilizing BTRC and promoting TFEB degradation, thereby accelerating TNBC metastasis and growth. Our study provides promising therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Hong-Yu Shen
- Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Lin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Division of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Qin-Nan Chen
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China.
| | - Zhen Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan Mao
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Das K, Paul S, Ghosh A, Gupta S, Mukherjee T, Shankar P, Sharma A, Keshava S, Chauhan SC, Kashyap VK, Parashar D. Extracellular Vesicles in Triple-Negative Breast Cancer: Immune Regulation, Biomarkers, and Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4879. [PMID: 37835573 PMCID: PMC10571545 DOI: 10.3390/cancers15194879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype accounting for ~10-20% of all human BC and is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) amplification. Owing to its unique molecular profile and limited targeted therapies, TNBC treatment poses significant challenges. Unlike other BC subtypes, TNBC lacks specific molecular targets, rendering endocrine therapies and HER2-targeted treatments ineffective. The chemotherapeutic regimen is the predominant systemic treatment modality for TNBC in current clinical practice. However, the efficacy of chemotherapy in TNBC is variable, with response rates varying between a wide range of patients, and the emerging resistance further adds to the difficulties. Furthermore, TNBC exhibits a higher mutational burden and is acknowledged as the most immunogenic of all BC subtypes. Consequently, the application of immune checkpoint inhibition has been investigated in TNBC, yielding promising outcomes. Recent evidence identified extracellular vesicles (EVs) as an important contributor in the context of TNBC immunotherapy. In view of the extraordinary ability of EVs to transfer bioactive molecules, such as proteins, lipids, DNA, mRNAs, and small miRNAs, between the cells, EVs are considered a promising diagnostic biomarker and novel drug delivery system among the prospects for immunotherapy. The present review provides an in-depth understanding of how EVs influence TNBC progression, its immune regulation, and their contribution as a predictive biomarker for TNBC. The final part of the review focuses on the recent key advances in immunotherapeutic strategies for better understanding the complex interplay between EVs and the immune system in TNBC and further developing EV-based targeted immunotherapies.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA or
| | - Anshul Sharma
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek Kumar Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Zhang Y, Lu A, Zhuang Z, Zhang S, Liu S, Chen H, Yang X, Wang Z. Can Organoid Model Reveal a Key Role of Extracellular Vesicles in Tumors? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5511-5527. [PMID: 37791321 PMCID: PMC10544113 DOI: 10.2147/ijn.s424737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles that are released by cells into the extracellular environment. The role of EVs in tumors has been extensively studied, and they have been shown to play a crucial role in tumor growth, progression, and metastasis. Past research has mainly used 2D-cultured cell line models to investigate the role of EVs in tumors, which poorly simulate the tumor microenvironment. Organoid technology has gradually matured in recent years. Organoids are similar in composition and behavior to physiological cells and have the potential to recapitulate the architecture and function of the original tissue. It has been widely used in organogenesis, drug screening, gene editing, precision medicine and other fields. The integration of EVs and organoids has the potential to revolutionize the field of cancer research and represents a promising avenue for advancing our understanding of cancer biology and the development of novel therapeutic strategies. Here, we aimed to present a comprehensive overview of studies using organoids to study EVs in tumors.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Anqing Lu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Central Transportation, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- West China School of Nursing, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zixuan Zhuang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Sicheng Liu
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Haining Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuyang Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ziqiang Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
13
|
Zhang Y, Wang W, Min J, Liu S, Wang Q, Wang Y, Xiao Y, Li X, Zhou Z, Liu S. ZNF451 favors triple-negative breast cancer progression by enhancing SLUG-mediated CCL5 transcriptional expression. Cell Rep 2023; 42:112654. [PMID: 37342906 DOI: 10.1016/j.celrep.2023.112654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with limited effective therapies because of the absence of definitive targets. Here, we demonstrate that the expression of ZNF451, a poorly characterized vertebrate zinc-finger protein, is upregulated in TNBC and associated with a poor prognosis. Elevated ZNF451 expression facilitates TNBC progression by interacting with and enhancing the activity of the transcriptional activator snail family transcriptional repressor 2 (SLUG). Mechanistically, the ZNF451-SLUG complex preferentially recruits the acetyltransferase p300/CBP-associated factor (PCAF) to the CCL5 promoter, selectively facilitating CCL5 transcription by enhancing the acetylation of SLUG and local chromatin, leading to recruitment and activation of tumor-associated macrophages (TAMs). Disturbing the ZNF451-SLUG interaction using a peptide suppresses TNBC progression by reducing CCL5 expression and counteracting the migration and activation of TAMs. Collectively, our work provides mechanistic insights into the oncogene-like functions of ZNF451 and suggests that ZNF451 is a potential target for development of effective therapies against TNBC.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wanyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China.
| |
Collapse
|
14
|
Shettigar A, Salunke R, Modi D, Mukherjee N. Targeting molecular cross-talk between tumor cells and tumor associated macrophage as therapeutic strategy in triple negative breast cancer. Int Immunopharmacol 2023; 119:110250. [PMID: 37163922 DOI: 10.1016/j.intimp.2023.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Triple-negative Breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks expression for ER/PR/Her2 receptors and is associated with aggressive disease pathogenesis and the worst prognosis among other subtypes of BC. Accumulating evidence-based studies indicate the high immunogenic ability of TNBC tumors and the applicability of immunotherapeutic strategies to overcome therapy resistance and tumor recurrence in TNBC patients. However, not all TNBC patients respond equally well to current immunotherapies that mainly target the adaptive immune system for tumor rejection. Recent studies are contemplating the efficacy of tumor-associated macrophage (TAM) targeted therapies since these subpopulations of cells comprise one of the major components of tumor-infiltrating immune cells (TIIs) in the TNBC tumor microenvironment (TME) and play an essential role in priming the adaptive immune response mediators towards both antitumorigenic and pro-tumorigenic response facilitated by intercellular cross-talk between tumor cells and TAM populations present within TNBC-TME. The present review discusses these molecular mechanisms and their consequence on the progression of TNBC tumors. Also, the therapeutic strategies targeting candidate genes/pathways involved in molecular cross-talk between TAM-TNBC cells and their impact on the development and progression of TNBC tumors are also discussed.
Collapse
Affiliation(s)
- Anusha Shettigar
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rushigandha Salunke
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nupur Mukherjee
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
15
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
16
|
May AM, Batoon L, McCauley LK, Keller ET. The Role of Tumor Epithelial-Mesenchymal Transition and Macrophage Crosstalk in Cancer Progression. Curr Osteoporos Rep 2023; 21:117-127. [PMID: 36848026 PMCID: PMC10106416 DOI: 10.1007/s11914-023-00780-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published findings regarding the role of epithelial to mesenchymal transition (EMT) in tumor progression, macrophages in the tumor microenvironment, and crosstalk that exists between tumor cells and macrophages. RECENT FINDINGS EMT is a crucial process in tumor progression. In association with EMT changes, macrophage infiltration of tumors occurs frequently. A large body of evidence demonstrates that various mechanisms of crosstalk exist between macrophages and tumor cells that have undergone EMT resulting in a vicious cycle that promotes tumor invasion and metastasis. Tumor-associated macrophages and tumor cells undergoing EMT provide reciprocal crosstalk which leads to tumor progression. These interactions provide potential targets to exploit for therapy.
Collapse
Affiliation(s)
- Allison M May
- Department of Urology, Medical School, University of Michigan, NCRC, Building 14, Room 116 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA
| | - Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Evan T Keller
- Department of Urology, Medical School, University of Michigan, NCRC, Building 14, Room 116 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA.
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Single Cell Spatial Analysis Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Lee Y, Graham P, Li Y. Extracellular vesicles as a novel approach for breast cancer therapeutics. Cancer Lett 2023; 555:216036. [PMID: 36521658 DOI: 10.1016/j.canlet.2022.216036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) still lacks effective management approaches to control metastatic and therapy-resistant disease. Extracellular vesicles (EVs), with a diameter of 50-1000 nm, are secreted by all types of living cells, are protected by a lipid bilayer and encapsulate biological cargos including RNAs, proteins and lipids. They play an important role in intercellular communications and are significantly associated with pathological conditions. Accumulating evidence indicates that cancer cells secrete EVs and communicate with neighboring cells within the tumor microenvironment (TME), which plays an important role in BC metastasis, immune escape and chemoresistance, thus providing a new therapeutic window. EVs can stimulate angiogenesis and extracellular matrix remodeling, establish premetastatic niches, inhibit immune response and promote cancer metastasis. Recent advances have demonstrated that EVs are a potential therapeutic target or carrier and have emerged as promising strategies for BC treatment. In this review, we summarize the role of EVs in BC metastasis, chemoresistance and immune escape, which provides the foundation for developing novel therapeutic approaches. We also focus on current EV-based drug delivery strategies in BC and EV cargo-targeted BC therapy and discuss the limitations and future perspectives of EV-based drug delivery in BC.
Collapse
Affiliation(s)
- Yujin Lee
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
18
|
Figy C, Guo A, Fernando VR, Furuta S, Al-Mulla F, Yeung KC. Changes in Expression of Tumor Suppressor Gene RKIP Impact How Cancers Interact with Their Complex Environment. Cancers (Basel) 2023; 15:cancers15030958. [PMID: 36765912 PMCID: PMC9913418 DOI: 10.3390/cancers15030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is the immediate environment where cancer cells reside in a tumor. It is composed of multiple cell types and extracellular matrix. Microenvironments can be restrictive or conducive to the progression of cancer cells. Initially, microenvironments are suppressive in nature. Stepwise accumulation of mutations in oncogenes and tumor suppressor genes enables cancer cells to acquire the ability to reshape the microenvironment to advance their growth and metastasis. Among the many genetic events, the loss-of-function mutations in tumor suppressor genes play a pivotal role. In this review, we will discuss the changes in TME and the ramifications on metastasis upon altered expression of tumor metastasis suppressor gene RKIP in breast cancer cells.
Collapse
Affiliation(s)
- Christopher Figy
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Anna Guo
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Veani Roshale Fernando
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Kam C. Yeung
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
19
|
Formation of pre-metastatic niches induced by tumor extracellular vesicles in lung metastasis. Pharmacol Res 2023; 188:106669. [PMID: 36681367 DOI: 10.1016/j.phrs.2023.106669] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
There are a number of malignant tumors that metastasize into the lung as one of their most common sites of dissemination. The successful infiltration of tumor cells into distant organs is the result of the cooperation between tumor cells and distant host cells. When tumor cells have not yet reached distant organs, in situ tumor cells secrete extracellular vesicles (EVs) carrying important biological information. In recent years, scholars have found that tumor cells-derived EVs act as the bridge between orthotopic tumors and secondary metastases by promoting the formation of a pre-metastatic niche (PMN), which plays a key role in awakening dormant circulating tumor cells and promoting tumor cell colonization. This review provides an overview of multiple routes and mechanisms underlying PMN formation induced by EVs and summaries study findings that underline a potential role of EVs in the intervention of lung PMN, both as a target or a carrier for drug design. In this review, the underlying mechanisms of EVs in lung PMN formation are highlighted as well as potential applications to lung metastasis diagnosis and treatment.
Collapse
|
20
|
Kar R, Dhar R, Mukherjee S, Nag S, Gorai S, Mukerjee N, Mukherjee D, Vatsa R, Chandrakanth Jadhav M, Ghosh A, Devi A, Krishnan A, Thorat ND. Exosome-Based Smart Drug Delivery Tool for Cancer Theranostics. ACS Biomater Sci Eng 2023; 9:577-594. [PMID: 36621949 PMCID: PMC9930096 DOI: 10.1021/acsbiomaterials.2c01329] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exosomes are the phospholipid-membrane-bound subpopulation of extracellular vesicles derived from the plasma membrane. The main activity of exosomes is cellular communication. In cancer, exosomes play an important rolefrom two distinct perspectives, one related to carcinogenesis and the other as theragnostic and drug delivery tools. The outer phospholipid membrane of Exosome improves drug targeting efficiency. . Some of the vital features of exosomes such as biocompatibility, low toxicity, and low immunogenicity make it a more exciting drug delivery system. Exosome-based drug delivery is a new innovative approach to cancer treatment. Exosome-associated biomarker analysis heralded a new era of cancer diagnostics in a more specific way. This Review focuses on exosome biogenesis, sources, isolation, interrelationship with cancer and exosome-related cancer biomarkers, drug loading methods, exosome-based biomolecule delivery, advances and limitations of exosome-based drug delivery, and exosome-based drug delivery in clinical settings studies. The exosome-based understanding of cancer will change the diagnostic and therapeutic approach in the future.
Collapse
Affiliation(s)
- Rishav Kar
- Department
of Medical Biotechnology, Ramakrishna Mission
Vivekananda Educational and Research Institute, Howrah, West Bengal 711202, India
| | - Rajib Dhar
- Cancer
and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Sagnik Nag
- Department
of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 W Harrison St, Chicago, Illinois 60612, United
States
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, Kolkata, West Bengal 700126, India,Department
of Health Sciences, Novel Global Community
Educational Foundation, https://www.ngcef.net/
| | - Dattatreya Mukherjee
- Raiganj
Government Medical College and Hospital, Raiganj, West Bengal 733134, India
| | - Rishabh Vatsa
- Department
of Microbiology, Vels Institute of Science,
Technology and Advanced Studies, Pallavaram, Chennai 600117, Tamilnadu, India
| | | | - Arabinda Ghosh
- Microbiology
Division, Department of Botany, Gauhati
University, Guwahati, Assam 781014, India
| | - Arikketh Devi
- Cancer
and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anand Krishnan
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| | - Nanasaheb D. Thorat
- Nuffield
Department of Women’s and Reproductive Health, Division of
Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 2JD, United Kingdom,Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC) University of Limerick, Castletroy, Limerick V94T9PX, Ireland,,
| |
Collapse
|
21
|
Zhang X, Bai W, Hu L, Ha H, Du Y, Xiong W, Wang H, Shang P. The pleiotropic mode and molecular mechanism of macrophages in promoting tumor progression and metastasis. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:91-104. [PMID: 36071369 DOI: 10.1007/s12094-022-02932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Macrophages are the most abundant immune cells in primary and metastatic tumor tissues. Studies have shown that macrophages mainly exhibit a tumor-promoting phenotype and play a key role in tumor progression and metastasis. Therefore, many macrophage-targeted drugs have entered clinical trials. However, compared to preclinical studies, some clinical trial results showed that macrophage-targeted therapy did not achieve the desired effect. This may be because most of what we know about macrophages comes from in vitro experiments and animal models, while macrophages in the more complex human microenvironment are still poorly understood. With the development of technologies such as single-cell RNA sequencing, we have gained a new understanding of the origin, classification and functional mechanism of tumor-associated macrophages. Therefore, this study reviewed the recent progress of macrophages in promoting tumor progression and metastasis, aiming to provide some help for the formulation of optimal strategies for macrophage-targeted therapy.
Collapse
Affiliation(s)
- Xingxing Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wenxiu Bai
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Lisha Hu
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Hualan Ha
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yuelin Du
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wei Xiong
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hongbo Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
22
|
Furukawa N, Stearns V, Santa-Maria CA, Popel AS. The tumor microenvironment and triple-negative breast cancer aggressiveness: shedding light on mechanisms and targeting. Expert Opin Ther Targets 2022; 26:1041-1056. [PMID: 36657483 PMCID: PMC10189896 DOI: 10.1080/14728222.2022.2170779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In contrast to other breast cancer subtypes, there are currently limited options of targeted therapies for triple-negative breast cancer (TNBC). Immense research has demonstrated that not only cancer cells but also stromal cells and immune cells in the tumor microenvironment (TME) play significant roles in the progression of TNBC. It is thus critical to understand the components of the TME of TNBC and the interactions between the various cell populations. AREAS COVERED The components of the TME of TNBC identified by single-cell technologies are reviewed. Furthermore, the molecular interactions between the cells and the potential therapeutic targets contributing to the progression of TNBC are discussed. EXPERT OPINION Single-cell omics studies have contributed to the classification of cells in the TME and the identification of important cell types involved in the progression and the treatment of the tumor. The interactions between cancer cells and stromal cells/immune cells in the TME have led to the discovery of potential therapeutic targets. Experimental data with spatial and temporal resolution will further boost the understanding of the TME of TNBC.
Collapse
Affiliation(s)
- Natsuki Furukawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cesar A. Santa-Maria
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
23
|
Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232213993. [PMID: 36430471 PMCID: PMC9693078 DOI: 10.3390/ijms232213993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer has been the most common cancer in women worldwide, and metastasis is the leading cause of death from breast cancer. Even though the study of breast cancer metastasis has been extensively carried out, the molecular mechanism is still not fully understood, and diagnosis and prognosis need to be improved. Breast cancer metastasis is a complicated process involving multiple physiological changes, and lung, brain, bone and liver are the main metastatic targets. Exosomes are membrane-bound extracellular vesicles that contain secreted cellular constitutes. The biogenesis and functions of exosomes in cancer have been intensively studied, and mounting studies have indicated that exosomes play a crucial role in cancer metastasis. In this review, we summarize recent findings on the role of breast cancer-derived exosomes in metastasis organotropism and discuss the potential promising clinical applications of targeting exosomes as novel strategies for breast cancer diagnosis and therapy.
Collapse
|
24
|
Tan Y, Zhao L, Yang YG, Liu W. The Role of Osteopontin in Tumor Progression Through Tumor-Associated Macrophages. Front Oncol 2022; 12:953283. [PMID: 35898884 PMCID: PMC9309262 DOI: 10.3389/fonc.2022.953283] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein. It is widely involved in solid tumor progression, such as intensification of macrophage recruitment, inhibition of T-cell activity, aggravation of tumor interstitial fibrosis, promotion of tumor metastasis, chemotherapy resistance, and angiogenesis. Most of these pathologies are affected by tumor-associated macrophages (TAMs), an important component of the tumor microenvironment (TME). TAMs have been extensively characterized, including their subsets, phenotypes, activation status, and functions, and are considered a promising therapeutic target for cancer treatment. This review focuses on the interaction between OPN and TAMs in mediating tumor progression. We discuss the strategies for targeting OPN and TAMs to treat cancer and factors that may affect the therapeutic outcomes of blocking OPN or depleting TAMs. We also discuss the role of cancer cell- vs. TAM-derived OPN in tumorigenesis, the mechanisms of how OPN affects TAM recruitment and polarization, and why OPN could mediate anti-tumor and pro-tumor effects, as well as previously reported discrepancies.
Collapse
Affiliation(s)
- Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| |
Collapse
|
25
|
Souza AG, Colli LM. Extracellular Vesicles and Interleukins: Novel Frontiers in Diagnostic and Therapeutic for Cancer. Front Immunol 2022; 13:836922. [PMID: 35386696 PMCID: PMC8978938 DOI: 10.3389/fimmu.2022.836922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells present many strategies for survival and dissemination in the tumor environment. Extracellular vesicles are a vital pathway used in crosstalk between tumor and non-malignant cells. They carry different types of molecules that, when internalized by target cells, can activate signaling pathways and molecular processes that will promote and disseminate neoplastic cells. Proteins, nucleic acids, and different cytokines, such as interleukins, are the main classes of molecules carried by extracellular vesicles and are being studied to understand the molecular mechanisms present in the tumor microenvironment. In particular, although poorly understood, the association between EVs and interleukins has revealed potential approaches to the diagnosis and therapeutics of several neoplasms.
Collapse
Affiliation(s)
- Aline G Souza
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leandro M Colli
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
26
|
Dong M, Liu Q, Xu Y, Zhang Q. Extracellular Vesicles: The Landscape in the Progression, Diagnosis, and Treatment of Triple-Negative Breast Cancer. Front Cell Dev Biol 2022; 10:842898. [PMID: 35300426 PMCID: PMC8920975 DOI: 10.3389/fcell.2022.842898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer (BC) with diverse biological behavior, high aggressiveness, and poor prognosis. Extracellular vesicles (EVs) are nano-sized membrane-bound vesicles secreted by nearly all cells, and are involved in physiological and pathological processes. EVs deliver multiple functional cargos into the extracellular space, including proteins, lipids, mRNAs, non-coding RNAs (ncRNAs), and DNA fragments. Emerging evidence confirms that EVs enable pro-oncogenic secretome delivering and trafficking for long-distance cell-to-cell communication in shaping the tumor microenvironment (TME). The transferred tumor-derived EVs modify the capability of invasive behavior and organ-specific metastasis in recipient cells. In addition, TNBC cell-derived EVs have been extensively investigated due to their promising potential as valuable biomarkers for diagnosis, monitoring, and treatment evaluation. Here, the present review will discuss the recent progress of EVs in TNBC growth, metastasis, immune regulation, as well as the potential in TNBC diagnosis and treatment application, hoping to decipher the advantages and challenges of EVs for combating TNBC.
Collapse
Affiliation(s)
- Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Liu
- Department of Thyroid and Breast Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yi Xu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
St-Denis-Bissonnette F, Khoury R, Mediratta K, El-Sahli S, Wang L, Lavoie JR. Applications of Extracellular Vesicles in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:451. [PMID: 35053616 PMCID: PMC8773485 DOI: 10.3390/cancers14020451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and refractory subtype of breast cancer, often occurring in younger patients with poor clinical prognosis. Given the current lack of specific targets for effective intervention, the development of better treatment strategies remains an unmet medical need. Over the last decade, the field of extracellular vesicles (EVs) has grown tremendously, offering immense potential for clinical diagnosis/prognosis and therapeutic applications. While TNBC-EVs have been shown to play an important role in tumorigenesis, chemoresistance and metastasis, they could be repurposed as potential biomarkers for TNBC diagnosis and prognosis. Furthermore, EVs from various cell types can be utilized as nanoscale drug delivery systems (NDDS) for TNBC treatment. Remarkably, EVs generated from specific immune cell subsets have been shown to delay solid tumour growth and reduce tumour burden, suggesting a new immunotherapy approach for TNBC. Intrinsically, EVs can cross the blood-brain barrier (BBB), which holds great potential to treat the brain metastases diagnosed in one third of TNBC patients that remains a substantial clinical challenge. In this review, we present the most recent applications of EVs in TNBC as diagnostic/prognostic biomarkers, nanoscale drug delivery systems and immunotherapeutic agents, as well as discuss the associated challenges and future directions of EVs in cancer immunotherapy.
Collapse
Affiliation(s)
- Frederic St-Denis-Bissonnette
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Rachil Khoury
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Jessie R. Lavoie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
28
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021; 11:788365. [PMID: 34988021 PMCID: PMC8722774 DOI: 10.3389/fonc.2021.788365] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil M. O’Brien-Simpson
- Antimicrobial, Cancer Therapeutics and Vaccines (ACTV) Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Tang W, Xia M, Liao Y, Fang Y, Wen G, Zhong J. Exosomes in triple negative breast cancer: From bench to bedside. Cancer Lett 2021; 527:1-9. [PMID: 34902521 DOI: 10.1016/j.canlet.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Exosomes are lipid bilayer extracellular vesicles with a size of 30-150 nm, which can be released by various types of cells including breast cancer cells. Exosomes are enriched with multiple nucleic acids, lipids, proteins and play critical biological roles by binding to recipient cells and transmitting various biological cargos. Studies have reported that tumor-derived exosomes are involved in cancer initiation and progression, such as promoting cancer invasion and metastasis, accelerating angiogenesis, contributing to epithelial-mesenchymal transition, and enhancing drug resistance in tumors. Recently the dysregulating of exosomes has been found in triple-negative breast cancer (TNBC), relating to the clinicopathological characteristics and prognosis of TNBC patients. Considering the poor prognosis and lack of adequate response to conventional therapy of TNBC, the discovery of certain exosomes as a new target for diagnosis and treatment of TNBC may be a good choice that provides new opportunities for the early diagnosis, clinical treatment of TNBC. Here, we first discuss the innovative prognostic and predictive effects of exosomes on TNBC, as well as the practical clinical problems. Secondly, we focus on the new therapeutic areas represented by exosomes, especially the impact of introducing exosomes in TNBC treatment in the future.
Collapse
Affiliation(s)
- Weiqiang Tang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajie Liao
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|