1
|
Dobaño-López C, Valero JG, Araujo-Ayala F, Nadeu F, Gava F, Faria C, Norlund M, Morin R, Bernes-Lasserre P, Arenas F, Grau M, López C, López-Oreja I, Serrat N, Martínez-Farran A, Hernández L, Playa-Albinyana H, Giménez R, Beà S, Campo E, Lagarde JM, López-Guillermo A, Magnano L, Colomer D, Bezombes C, Pérez-Galán P. Patient-derived follicular lymphoma spheroids recapitulate lymph node signaling and immune profile uncovering galectin-9 as a novel immunotherapeutic target. Blood Cancer J 2024; 14:75. [PMID: 38697976 PMCID: PMC11636880 DOI: 10.1038/s41408-024-01041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Follicular lymphoma (FL), the most common indolent non-Hodgkin lymphoma, constitutes a paradigm of immune tumor microenvironment (TME) contribution to disease onset, progression, and heterogenous clinical outcome. Here we present the first FL-Patient Derived Lymphoma Spheroid (FL-PDLS), including fundamental immune actors and features of TME in FL lymph nodes (LNs). FL-PDLS is organized in disc-shaped 3D structures composed of proliferating B and T cells, together with macrophages with an intermediate M1/M2 phenotype. FL-PDLS recapitulates the most relevant B-cell transcriptional pathways present in FL-LN (proliferation, epigenetic regulation, mTOR, adaptive immune system, among others). The T cell compartment in the FL-PDLS preserves CD4 subsets (follicular helper, regulatory, and follicular regulatory), also encompassing the spectrum of activation/exhaustion phenotypes in CD4 and CD8 populations. Moreover, this system is suitable for chemo and immunotherapy testing, recapitulating results obtained in the clinic. FL-PDLS allowed uncovering that soluble galectin-9 limits rituximab, rituximab, plus nivolumab/TIM-3 antitumoral activities. Blocking galectin-9 improves rituximab efficacy, highlighting galectin-9 as a novel immunotherapeutic target in FL. In conclusion, FL-PDLS maintains the crosstalk between malignant B cells and the immune LN-TME and constitutes a robust and multiplexed pre-clinical tool to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.
Collapse
Affiliation(s)
- Cèlia Dobaño-López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Juan García Valero
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Araujo-Ayala
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Fabien Gava
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Carla Faria
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | | | | | - Fabian Arenas
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Marta Grau
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Irene López-Oreja
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Neus Serrat
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ares Martínez-Farran
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Lluís Hernández
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Heribert Playa-Albinyana
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Rubén Giménez
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Silvia Beà
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Elías Campo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | | | - Armando López-Guillermo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Laura Magnano
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- IMACTIV-3D, Toulouse, France
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Dolors Colomer
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Christine Bezombes
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| | - Patricia Pérez-Galán
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
2
|
Sun Z, Wang H, Xu Y, Liu Y, Wang L, Zhou R, Zhou R, Ma W, Zhang T. High expression of NXPH4 correlates with poor prognosis, metabolic reprogramming, and immune infiltration in colon adenocarcinoma. J Gastrointest Oncol 2024; 15:641-667. [PMID: 38756632 PMCID: PMC11094489 DOI: 10.21037/jgo-23-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Colon adenocarcinoma (COAD) is a prevalent gastrointestinal malignant disease with high mortality rate, and identification of novel prognostic biomarkers and therapeutic targets is urgently needed. Although neurexophilin 4 (NXPH4) has been investigated in several tumors, its role in COAD remains unclear. The aim of this study was to explore the prognostic value and potential functions of NXPH4 in COAD. Methods The expression of NXPH4 in COAD were analyzed using The Cancer Genome Atlas (TCGA) and datasets from the Gene Expression Omnibus (GEO) database. The prognostic value of NXPH4 was determined using Kaplan-Meier analysis and Cox regression analysis. To investigate the possible mechanism underlying the role of NXPH4 in COAD, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were employed. The correlation between NXPH4 expression and immune cell infiltration levels was examined thorough single-sample gene set enrichment analysis (ssGSEA). Furthermore, the competing endogenous RNA (ceRNA) regulatory network that may be involved in NXPH4 in COAD was predicted and constructed through a variety of databases. Results NXPH4 expression was significantly higher in COAD tissue compared with normal colon tissues. Meanwhile, high expression of NXPH4 was associated with poor prognosis in COAD patients. GO-KEGG and GSEA analyses indicated that NXPH4 was associated with glycolysis and hypoxia pathway, and may promote COAD progression and metastasis by modulating metabolic reprogramming. ssGSEA analysis demonstrated that NXPH4 expression also associated with immune infiltration. Furthermore, we identified various microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) as upstream regulators of NXPH4 in COAD. Conclusions The present study revealed that high expression of NXPH4 is associated with tumor progression, metabolic reprogramming, and immune infiltration. These findings suggest that NXPH4 could serve as a reliable prognostic biomarker and a promising therapeutic target in COAD.
Collapse
Affiliation(s)
- Zhe Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haodi Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yichi Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ruijie Zhou
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Runlong Zhou
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Qilu Institute of Technology, Jinan, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Yıldırım C. Galectin-9, a pro-survival factor inducing immunosuppression, leukemic cell transformation and expansion. Mol Biol Rep 2024; 51:571. [PMID: 38662155 DOI: 10.1007/s11033-024-09563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Leukemia is a malignancy of the bone marrow and blood originating from self-renewing cancerous immature blast cells or transformed leukocytes. Despite improvements in treatments, leukemia remains still a serious disease with poor prognosis because of disease heterogeneity, drug resistance and relapse. There is emerging evidence that differentially expression of co-signaling molecules play a critical role in tumor immune evasion. Galectin-9 (Gal-9) is one of the key proteins that leukemic cells express, secrete, and use to proliferate, self-renew, and survive. It also suppresses host immune responses controlled by T and NK cells, enabling leukemic cells to evade immune surveillance. The present review provides the molecular mechanisms of Gal-9-induced immune evasion in leukemia. Understanding the complex immune evasion machinery driven by Gal-9 expressing leukemic cells will enable the identification of novel therapeutic strategies for efficient immunotherapy in leukemic patients. Combined treatment approaches targeting T-cell immunoglobulin and mucin domain-3 (Tim-3)/Gal-9 and other immune checkpoint pathways can be considered, which may enhance the efficacy of host effector cells to attack leukemic cells.
Collapse
Affiliation(s)
- Cansu Yıldırım
- Atatürk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| |
Collapse
|
4
|
Lv Y, Ma X, Ma Y, Du Y, Feng J. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis 2023; 10:2366-2382. [PMID: 37554219 PMCID: PMC10404877 DOI: 10.1016/j.gendis.2022.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022] Open
Abstract
Over the past few decades, advances in immunological knowledge have led to the identification of novel immune checkpoints, reinvigorating cancer immunotherapy. Immunotherapy, represented by immune checkpoint inhibitors, has become the leader in the precision treatment of cancer, bringing a new dawn to the treatment of most cancer patients. Galectin-9 (LGALS9), a member of the galectin family, is a widely expressed protein involved in immune regulation and tumor pathogenesis, and affects the prognosis of various types of cancer. Galectin-9 regulates immune homeostasis and tumor cell survival through its interaction with its receptor Tim-3. In the review, based on a brief description of the signaling mechanisms and immunomodulatory activities of galectin-9 and Tim-3, we summarize the targeted expression patterns of galectin-9 in a variety of malignancies and the promising mechanisms of anti-galectin-9 therapy in stimulating anti-tumor immune responses.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| |
Collapse
|
5
|
Shao Y, Gui X, Wang Y, Sheng L, Sun D, Zeng Q, Wang H. Serum soluble immune checkpoint levels predict cervical lymph node metastasis of differentiated thyroid carcinoma patients. Cancer Med 2023; 12:17648-17659. [PMID: 37501393 PMCID: PMC10524022 DOI: 10.1002/cam4.6382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Cervical lymph node metastasis (CLNM) is common in patients with differentiated thyroid carcinoma (DTC); however, the efficiency to distinguish CLNM before surgery is limited. T cell exhaustion, characterized by the overexpression of immune checkpoints, plays a critical role in the immune evasion of tumors. The aim of this study is to analyze the association between serum levels of soluble immune checkpoints (sICs) and CLNM in DTC patients. METHODS Levels of sICs in serum of 71 DTC patients and 56 healthy volunteers were analyzed by ELISA. Peripheral blood mononuclear cells and cervical lymph nodes of DTC patients were isolated and their expression of sICs were analyzed. Lymphocytes in cervical lymph nodes were analyzed for immune checkpoints expression and transcription of exhaustion-associated factors. 30 out of 71 DTC patients were followed up from 3 to 9 months after the operation, and postoperative sTIM-3 were analyzed. RESULTS Four sICs, including LAG-3, PD-1, PD-L1, and TIM-3, were increased in DTC patients. All four sICs exhibited higher sensitivity at discriminating CLNM than cervical ultrasound. In the patient-matched comparison, higher sTIM-3 levels were observed in tumor-involved lymph nodes (TILNs) than in normal lymph nodes (nLNs). T lymphocytes in TILNs had higher TIM-3 surface expression and increased secretion of sTIM-3 than those in patient-matched nLNs. Finally, postoperative serum sTIM-3 levels were decreased in DTC patients with CLNM compared to their preoperative levels. CONCLUSION Serum levels of sICs, especially sTIM-3, could help to predict CLNM and provide evidence for surgical decision-making in DTC.
Collapse
Affiliation(s)
- Yi Shao
- Department of Thyroid Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xinru Gui
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Yuxin Wang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Lei Sheng
- Department of Thyroid Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Dong Sun
- Department of Gastrointestinal SurgeryShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical ScienceJinanChina
| | - Qingdong Zeng
- Department of Thyroid Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Huayang Wang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
6
|
Bailly C, Thuru X, Goossens L, Goossens JF. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Biochem Pharmacol 2023; 209:115445. [PMID: 36739094 DOI: 10.1016/j.bcp.2023.115445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Immune checkpoints inhibition is a privileged approach to combat cancers and other human diseases. The TIM-3 (T cell immunoglobulin and mucin-domain containing-3) inhibitory checkpoint expressed on different types of immune cells is actively investigated as an anticancer target, with a dozen of monoclonal antibodies in (pre)clinical development. A soluble form sTIM-3 can be found in the plasma of patients with cancer and other diseases. This active circulating protein originates from the proteolytic cleavage by two ADAM metalloproteases of the membrane receptor shared by tumor and non-tumor cells, and extracellular vesicles. In most cancers but not all, overexpression of mTIM-3 at the cell surface leads to high level of sTIM-3. Similarly, elevated levels of sTIM-3 have been reported in chronic autoimmune diseases, inflammatory gastro-intestinal diseases, certain viral and parasitic diseases, but also in cases of organ transplantation and in pregnancy-related pathologies. We have analyzed the origin of sTIM-3, its methods of dosage in blood or plasma, its presence in multiple diseases and its potential role as a biomarker to follow disease progression and/or the treatment response. In contrast to sPD-L1 generated by different classes of proteases and by alternative splicing, sTIM-3 is uniquely produced upon ADAM-dependent shedding, providing a more homogenous molecular entity and a possibly more reliable molecular marker. However, the biological functionality of sTIM-3 remains insufficiently characterized. The review shed light on pathologies associated with an altered expression of sTIM-3 in human plasma and the possibility to use sTIM-3 as a diagnostic or therapeutic marker.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Laurence Goossens
- University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| |
Collapse
|
7
|
Peng X, Zhu X, Di T, Tang F, Guo X, Liu Y, Bai J, Li Y, Li L, Zhang L. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol 2022; 13:994053. [PMID: 36211357 PMCID: PMC9537682 DOI: 10.3389/fimmu.2022.994053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of myeloid clonal diseases with diverse clinical courses, and immune dysregulation plays an important role in the pathogenesis of MDS. However, immune dysregulation is complex and heterogeneous in the development of MDS. Lower-risk MDS (LR-MDS) is mainly characterized by immune hyperfunction and increased apoptosis, and the immunosuppressive therapy shows a good response. Instead, higher-risk MDS (HR-MDS) is characterized by immune suppression and immune escape, and the immune activation therapy may improve the survival of HR-MDS. Furthermore, the immune dysregulation of some MDS changes dynamically which is characterized by the coexistence and mutual transformation of immune hyperfunction and immune suppression. Taken together, the authors think that the immune dysregulation in MDS with different risk stratification can be summarized by an advanced philosophical thought “Yin-Yang theory” in ancient China, meaning that the opposing forces may actually be interdependent and interconvertible. Clarifying the mechanism of immune dysregulation in MDS with different risk stratification can provide the new basis for diagnosis and clinical treatment. This review focuses on the manifestations and roles of immune dysregulation in the different risk MDS, and summarizes the latest progress of immunotherapy in MDS.
Collapse
Affiliation(s)
- Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaofeng Zhu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tianning Di
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaojia Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
8
|
Shi Y, Tang D, Li X, Xie X, Ye Y, Wang L. Galectin Family Members: Emerging Novel Targets for Lymphoma Therapy? Front Oncol 2022; 12:889034. [PMID: 35677161 PMCID: PMC9168125 DOI: 10.3389/fonc.2022.889034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The galectin family of proteins has high affinity with β-galactoside-containing glycans. These proteins participate in cell growth and differentiation, cell adhesion, cell signal transduction, cell apoptosis, and other cellular activities. In recent years, a large number of studies have described the expression and correlation of galectins in different tumors. Each member of the family plays a vital role in tumor growth, progression, angiogenesis, adhesion, and tumor immune escape. Studies on the roles of galectins in lymphoma have mainly involved galectin-1, -3, -7, and -9. The results suggest that galectins may become novel targets for precise tumor treatment. This article reviews current research progress regarding galectins in lymphoma and provides new ideas for exploring them as novel targets for treating lymphoma and other important medical issues.
Collapse
Affiliation(s)
- Yuanwei Shi
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Danting Tang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Xiaoqi Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Yufu Ye
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, China
- Linyi Key Laboratory of Tumor Biology, Linyi, China
| |
Collapse
|
9
|
Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2022; 14:pharmaceutics14051075. [PMID: 35631660 PMCID: PMC9143284 DOI: 10.3390/pharmaceutics14051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022] Open
Abstract
It is more than sixty years since the era of modern photodynamic therapy (PDT) for cancer began. Enhanced selectivity for malignant cells with a reduced selectivity for non-malignant cells and good biocompatibility along with the limited occurrence of side effects are considered to be the most significant advantages of PDT in comparison with conventional therapeutic approaches, e.g., chemotherapy. The phenomenon of multidrug resistance, which is associated with drug efflux transporters, was originally identified in relation to the application of chemotherapy. Unfortunately, over the last thirty years, numerous papers have shown that many photosensitizers are the substrates of efflux transporters, significantly restricting the effectiveness of PDT. The concept of a dynamic nanoplatform offers a possible solution to minimize the multidrug resistance effect in cells affected by PDT. Indeed, recent findings have shown that the utilization of nanoparticles could significantly enhance the therapeutic efficacy of PDT. Additionally, multifunctional nanoplatforms could induce the synergistic effect of combined treatment regimens, such as PDT with chemotherapy. Moreover, the surface modifications that are associated with nanoparticle functionalization significantly improve the target potential of PDT or chemo-PDT in multidrug resistant and cancer stem cells.
Collapse
|
10
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
11
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|