2
|
Qin G, Bai F, Hu H, Zhang J, Zhan W, Wu Z, Li J, Fu Y, Deng Y. Targeting the NAT10/NPM1 axis abrogates PD-L1 expression and improves the response to immune checkpoint blockade therapy. Mol Med 2024; 30:13. [PMID: 38243170 PMCID: PMC10799409 DOI: 10.1186/s10020-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND PD-1/PD-L1 play a crucial role as immune checkpoint inhibitors in various types of cancer. Although our previous study revealed that NPM1 was a novel transcriptional regulator of PD-L1 and stimulated the transcription of PD-L1, the underlying regulatory mechanism remains incompletely characterized. METHODS Various human cancer cell lines were used to validate the role of NPM1 in regulating the transcription of PD-L1. The acetyltransferase NAT10 was identified as a facilitator of NPM1 acetylation by coimmunoprecipitation and mass spectrometry. The potential application of combined NAT10 inhibitor and anti-CTLA4 treatment was evaluated by an animal model. RESULTS We demonstrated that NPM1 enhanced the transcription of PD-L1 in various types of cancer, and the acetylation of NPM1 played a vital role in this process. In particular, NAT10 facilitated the acetylation of NPM1, leading to enhanced transcription and increased expression of PD-L1. Moreover, our findings demonstrated that Remodelin, a compound that inhibits NAT10, effectively reduced NPM1 acetylation, leading to a subsequent decrease in PD-L1 expression. In vivo experiments indicated that Remodelin combined with anti-CTLA-4 therapy had a superior therapeutic effect compared with either treatment alone. Ultimately, we verified that the expression of NAT10 exhibited a positive correlation with the expression of PD-L1 in various types of tumors, serving as an indicator of unfavorable prognosis. CONCLUSION This study suggests that the NAT10/NPM1 axis is a promising therapeutic target in malignant tumors.
Collapse
Affiliation(s)
- Ge Qin
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Fan Bai
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Huabin Hu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianwei Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Weixiang Zhan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Zehua Wu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianxia Li
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yang Fu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yanhong Deng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
| |
Collapse
|
3
|
Jiayi C, Siru C, Xiaoqi L, Enling X, Hui W, Juze L, Changjun W. Effects of Jianpi Huayu Decoction on Th1/Th2 Immune Balance in Mice With Liver Cancer-Related Fatigue via the IL- 27/STAT1 Signaling Pathway. Integr Cancer Ther 2024; 23:15347354241263018. [PMID: 39077786 PMCID: PMC11289807 DOI: 10.1177/15347354241263018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 07/31/2024] Open
Abstract
Objective: The Chinese medicine Jianpi-Huayu decoction (, JPHY) can alleviate cancer-related fatigue in patients with liver cancer. However, its mechanism remains unclear. In this study, we used BALB/c mice with liver cancer model to investigate whether JPHY alleviates cancer-related fatigue by regulating Th1/Th2 immune balance; and the possible association with the IL-27/STAT1 signaling pathway. Methods: We established a mouse model of liver cancer fatigue. Mice were gavaged with physiological saline, low, medium, or high concentrations of JPHY respectively; and intraperitoneal injection of fludarabine (STAT1 pathway inhibitor) with JPHY for 21 days. We recorded the general condition of the mice, and assessed fatigue using scoring criteria and Exhausted Swimming Test. We calculated the spleen and thymus indices, performed H&E staining and immunohistochemical analysis on liver tumor tissues to observe the tumor proliferation marker ki67. We quantified the secretion levels of IFN-γ and IL-2 produced by Th1 cells in serum and splenic lymphocytes, as well as the secretion of IL-4, IL-10 by Th2 cells, and IL-27 in the signaling pathway through ELISA analysis. We evaluated the expression levels of p-STAT1 and STAT1 in spleen tissues using Western blot analysis. Results: JPHY exhibits a therapeutic effect on hepatocellular carcinoma-induced splenomegaly in murine models by upregulating the pro-inflammatory cytokines IFN-γ and IL-2 and downregulating the anti-inflammatory cytokines IL-4 and IL-10. Moreover, JPHY suppresses ki67 expression, reduces tumor-related inflammation infiltration, and ameliorates cancer-associated fatigue. Additionally, the expression of phosphorylated protein p-STAT1 is down-regulated. Conclusion: JPHY may improve the Th1/Th2 immune balance through its anti-inflammatory effects and promotion of IL-27-induced STAT1 phosphorylation, thereby alleviating fatigue in mice with liver cancer.
Collapse
Affiliation(s)
- Chen Jiayi
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chen Siru
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Luo Xiaoqi
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xu Enling
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wu Hui
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin Juze
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wang Changjun
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Chang F, Keam S, Hoang TS, Creaney J, Gill S, Nowak AK, Ebert M, Cook AM. Immune marker expression of irradiated mesothelioma cell lines. Front Oncol 2022; 12:1020493. [PMID: 36387076 PMCID: PMC9659742 DOI: 10.3389/fonc.2022.1020493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Though immune checkpoint inhibition has recently shown encouraging clinical efficacy in mesothelioma, most patients do not respond. Combining immune checkpoint inhibition with radiotherapy presents an attractive option for improving treatment responses owing to the various immunomodulatory effects of radiation on tumors. However, the ideal dosing and scheduling of combined treatment remains elusive, as it is poorly studied in mesothelioma. The present study characterizes the dose- and time-dependent changes to expression of various immune markers and cytokines important to antitumor responses following irradiation of mesothelioma cell lines. Methods Two murine (AB1, AE17) and two human (BYE, JU77) mesothelioma cell lines were treated with titrated gamma-radiation doses (1-8 Gy) and the expression of MHC class-I, MHC class-II and PD-L1 was measured over a series of post-irradiation timepoints (1-72 hours) by flow cytometry. Levels of cytokines IL-1α, IL-1β, IL-6, IL-10, IL-12p70, IL-17A, IL-23, IL-27, MCP-1, IFN-β, IFN-γ, TNF-α, and GM-CSF were measured by multiplex immunoassay in murine cell lines following 8 Gy radiation. Results Following irradiation, a dose-dependent upregulation of MHC-I and PD-L1 was observed on three of the four cell lines studied to varying extents. For all cell lines, the increase in marker expression was most pronounced 72 hours after radiation. At this timepoint, increases in levels of cytokines IFN-β, MCP-1 and IL-6 were observed following irradiation with 8 Gy in AB1 but not AE17, reflecting patterns in marker expression. Conclusions Overall, this study establishes the dose- and time-dependent changes in immune marker expression of commonly studied mesothelioma cell lines following radiation and will inform future study into optimal dosing and scheduling of combined radiotherapy and immune checkpoint inhibition for mesothelioma.
Collapse
Affiliation(s)
- Faith Chang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Synat Keam
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Tracy Seymour Hoang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Martin Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Alistair M. Cook
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|