1
|
Zhou Q, Song B, He Y, Zhang Z, Chen S, Chen W, Li X, Jiang J. Identification of a disulfidptosis-related genes signature for diagnostic and immune infiltration characteristics in cervical cancer. PLoS One 2025; 20:e0322387. [PMID: 40305445 PMCID: PMC12043181 DOI: 10.1371/journal.pone.0322387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) ranks as the fourth most common malignancy affecting women globally, with research highlighting a rising incidence among younger age groups. Disulfidptosis, a newly identified form of regulated cell death, has been implicated in the pathogenesis of numerous diseases. This study employs bioinformatics analyses to explore the expression profiles and functional roles of disulfidptosis-related genes (DRGs) in the context of cervical cancer. METHODS Differential analysis of the gene expression matrix in CC was performed to identify differentially expressed genes. The overlap between these genes and disulfidptosis-related genes was then determined. Key hub genes were identified using multiple machine learning approaches, including LASSO regression, support vector machines (SVM), and random forest (RF). These hub genes were subsequently used to construct a predictive model, which was validated using external datasets to ensure robustness and reliability. RESULTS In this study, 11 overlapping genes were identified, among which four hub genes-BRK1, NDUFA11, RAC1, and NDUFS1-were extracted using machine learning techniques. The diagnostic performance of these hub genes was validated with external datasets, and a predictive model was constructed based on their expression. The model demonstrated an exceptionally high area under the curve (AUC) of 0.997. Moreover, AUC values exceeding 0.85 for two independent validation datasets further confirmed the model's accuracy and stability. Notably, NDUFA11 and BRK1 showed significant associations with patient survival, highlighting their prognostic importance in cervical squamous cell carcinoma. Using CMAP and DGIdb databases, Metformin and Coenzyme-I were identified as potential targeted therapies for NDUFS1 and NDUFA11, respectively, offering new therapeutic avenues for patients. CONCLUSION This study uncovered a strong association between disulfidptosis and CC and developed a predictive model to assess the risk in CC patients. These findings offer novel insights into identifying biomarkers and potential therapeutic targets for CC, paving the way for improved diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Qun Zhou
- Department of gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bangli Song
- Department of Internal Medicine, Zhejiang University of Technology Hospital, Hangzhou, Zhejiang, China
| | - Yibo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, ZheJiang, China
| | - Zhezhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, ZheJiang, China
| | - Shiliang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, ZheJiang, China
| | - Wenjun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xianbin Li
- School of Computer and Big Data Science, Jiujiang University, Jiujiang, China
| | - Jun Jiang
- Department of gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Li H, Ma Z, Yang W, Zhang Y, Sun J, Jiang H, Wang F, Hou L, Xia H. Metformin upregulates circadian gene PER2 to inhibit growth and enhance the sensitivity of glioblastoma cell lines to radiotherapy via SIRT2/G6PD pathway. Front Pharmacol 2025; 16:1563865. [PMID: 40166471 PMCID: PMC11955593 DOI: 10.3389/fphar.2025.1563865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Glioblastoma multiform (GBM) is considered the deadliest brain cancer. Standard therapies are followed by poor patient's survival outcomes, so novel and more efficacious therapeutic strategies are imperative to tackle this scourge. Metformin has been reported to have anti-cancer effects. However, the precise mechanism underlying these effects remains elusive. A better understanding of its underlying mechanism will inform future experimental designs exploring metformin as a potential adjuvant therapy for GBM. This research aimed to elucidate the potential molecular mechanism of metformin in GBM by integrating proteomics and transcriptomics. Methods The study examined the effects of metformin on GBM cell lines using various methods. The U87, U251 and HA1800 were cultured and modified through PER2 knockdown and overexpression. Cell viability was assessed using the CCK8 assay, and G6PDH activity and intracellular NADPH+ levels were measured with specific kits. ROS levels, mitochondrial membrane potential, cell cycle distribution and apoptosis were analyzed by flow cytometry. RNA was extracted for transcriptomic analysis through RNA sequencing, while proteomic analysis was performed on total protein from treated cells. WB detected specific proteins, and RT-qPCR quantified gene expression. In vivo experiments, GBM xenograft on nude mice treated with metformin combining radiotherapy was evaluated and received IHC and TUNEL staining for protein expression and apoptosis assessment. Statistical analyses were conducted using Prism software to identify significant group differences. Results We found that differential expressional genes and proteins relating to circadian rhythm were enriched in proteomic or transcriptomic. The expression of PER2, the key circadian gene, was up-regulated in GBM cell lines when treated with metformin. Furthermore, the expression of silent information regulator 2(SIRT2) was down-regulated, while the expression of the G6PD protein just slightly increased in GBM cell lines. Meanwhile, NADPH+ production and G6PDH enzyme activity significantly decreased. Further study validated that metformin inhibited the cell growth of GBM cell lines through up-regulating PER2 and inhibited SIRT2/G6PD signaling pathway, enhancing radiotherapy(RT) sensitivity. We also found that the inhibition of SIRT2 caused by metformin is mediated by PER2. Discussion We found the pivotal role of metformin as an effective circadian rhythm regulator. Targeting circadian clock gene to modify and rescue the dysfunctional circadian clock of GBM cells at molecular level might be an innovative way to administer cancer chronotherapy and maintain metabolic homeostasis in real world practice.
Collapse
Affiliation(s)
- Hailiang Li
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Zheng Ma
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, YinChuan, Ningxia, China
| | - Wanfu Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yifan Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinping Sun
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Faxuan Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Hou
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, YinChuan, Ningxia, China
| | - Hechun Xia
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
You Q, Li L, Ding H, Liu Y. Proteomics-based network pharmacology and molecular docking reveal the potential mechanisms of 5,6,7,4'-tetramethoxyflavone against HeLa cancer cells. Heliyon 2024; 10:e38951. [PMID: 39449708 PMCID: PMC11497385 DOI: 10.1016/j.heliyon.2024.e38951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Recent research has highlighted the therapeutic potential of citrus-derived dietary 5,6,7,4'-tetramethoxyflavone (TMF) against HeLa cancer. Our study aims to elucidate its mechanisms of action through proteomics analysis, network pharmacology, and molecular docking. The results suggested that TMF demonstrated efficacy by upregulating CD40, CD40L, Fas, Fas-L, HSP27, HSP60, IGFBP-1, IGFBP-2, IGF-1sR, Livin, p21, p27, sTNFR2, TRAILR2, TRAILAR3, TRAILR4, XIAP, p-Sre, p-Stat1, p-Stat2 p-c-Fos, p-SMAD1, p-SMAD2, p-SMAD4, p-SMAD5, p-IκBα, p-MSK1, p-NFκB, p-TAK1, p-TBK1, p-ZAP70, and p-MSK2, while downregulating p-EGFR, p-ATF2, p-cJUN, p-HSP27, p-JNK, and p-GSK3A. These targets are primarily involved in MAPK, apoptosis, and TNF signaling pathways. Notably, p21, p27, EGFR, SMAD4, JNK, ATF2, and c-JUN merged as pivotal targets contributing to TMF's anti-cancer efficacy against HeLa cells. This study is first to delineate the potential signaling pathways and core targets of TMF in treating of HeLa cancer, paving the way for further exploration of TMF's medical potential.
Collapse
Affiliation(s)
- Qiang You
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, China
| | - Lan Li
- School of Nursing, Peking University, Beijing, 100091, China
| | - Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
4
|
Daniłowska K, Picheta N, Krupska BI, Rudzińska A, Burdan O, Szklener K. Metformin in the treatment of colorectal cancer and neuroendocrine tumours. Contemp Oncol (Pozn) 2024; 28:85-90. [PMID: 39421710 PMCID: PMC11480908 DOI: 10.5114/wo.2024.142553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Colorectal cancer is being detected in increasingly younger age groups, and its incidence has been on the rise in recent years. Neuroendocrine tumors have also shown an increase in occurrence despite their rarity. Neuroendocrine tumors most commonly occur in the gastrointestinal tract and lungs. Therefore, new, better, and more effective treatment methods are being sought. Metformin, a drug commonly used in the treatment of type 2 diabetes, has demonstrated its ability to reduce the incidence and increase the efficacy of chemotherapy in colorectal cancer and neuroendocrine tumors. The biguanide works by inhibiting the mammalian target of rapamycin pathway, activating 5'AMP activated protein kinase, and reducing insulin-like growth factor 1. In studies conducted on human cells and xenografts, the drug has shown its positive effects in combating these tumors by reducing proliferation, slowing the growth of cancer cells, and inhibiting metastasis. The main goal of this review is to comprehensively summarize the current state of knowledge regarding metformin in the treatment of colorectal cancer and neuroendocrine tumors.
Collapse
Affiliation(s)
- Karolina Daniłowska
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Natalia Picheta
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Barbara I. Krupska
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Anna Rudzińska
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Oliwia Burdan
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Szklener
- Oncology and Chemotherapy Department, Independent Public Clinical Hospital no. 4, Lublin, Poland
| |
Collapse
|
5
|
Płonka-Czerw J, Żyrek L, Latocha M. Changes in the Sensitivity of MCF-7 and MCF-7/DX Breast Cancer Cells to Cytostatic in the Presence of Metformin. Molecules 2024; 29:3531. [PMID: 39124936 PMCID: PMC11313889 DOI: 10.3390/molecules29153531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Multidrug resistance is a serious problem in modern medicine and the reason for the failure of various therapies. A particularly important problem is the occurrence of multidrug resistance in cancer therapies which affects many cancer patients. Observations on the effect of metformin-a well-known hypoglycemic drug used in the treatment of type 2 diabetes-on cancer cells indicate the possibility of an interaction of this substance with drugs already used and, as a result, an increase in the sensitivity of cancer cells to cytostatics. The aim of this study was to evaluate the effect of metformin on the occurrence of multidrug resistance of breast cancer cells. The MCF-7-sensitive cell line and the MCF-7/DX cytostatic-resistant cell line were used for this study. WST-1 and LDH assays were used to evaluate the effects of metformin and doxorubicin on cell proliferation and viability. The effect of metformin on increasing the sensitivity of MCF-7 and MCF-7/DX cells to doxorubicin was evaluated in an MDR test. The participation of metformin in increasing the sensitivity of resistant cells to the effect of the cytostatic (doxorubicin) has been demonstrated.
Collapse
Affiliation(s)
- Justyna Płonka-Czerw
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (L.Ż.); (M.L.)
| | | | | |
Collapse
|
6
|
Chen YH, Wu JX, Yang SF, Wu YC, Hsiao YH. Molecular Mechanisms Underlying the Anticancer Properties of Pitavastatin against Cervical Cancer Cells. Int J Mol Sci 2024; 25:7915. [PMID: 39063157 PMCID: PMC11277542 DOI: 10.3390/ijms25147915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this study was to evaluate the anticancer effect of pitavastatin on cervical cancer and the underlying molecular mechanisms involved. The results showed that pitavastatin significantly inhibited cell viability by targeting cell-cycle arrest and apoptosis in Ca Ski, HeLa and C-33 A cells. Pitavastatin caused sub-G1- and G0/G1-phase arrest in Ca Ski and HeLa cells and sub-G1- and G2/M-phase arrest in C-33 A cells. Moreover, pitavastatin induced apoptosis via the activation of poly-ADP-ribose polymerase (PARP), Bax and cleaved caspase 3; inactivated the expression of Bcl-2; and increased mitochondrial membrane depolarization. Furthermore, pitavastatin induced apoptosis and slowed the migration of all three cervical cell lines, mediated by the PI3K/AKT and MAPK (JNK, p38 and ERK1/2) pathways. Pitavastatin markedly inhibited tumor growth in vivo in a cancer cell-originated xenograft mouse model. Overall, our results identified pitavastatin as an anticancer agent for cervical cancer, which might be expanded to clinical use in the future.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Jyun-Xue Wu
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yun-Chia Wu
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Yi-Hsuan Hsiao
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
7
|
Pan B, Liu C, Su J, Xia C. Activation of AMPK inhibits cervical cancer growth by hyperacetylation of H3K9 through PCAF. Cell Commun Signal 2024; 22:306. [PMID: 38831454 PMCID: PMC11145780 DOI: 10.1186/s12964-024-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Dysregulation in histone acetylation, a significant epigenetic alteration closely associated with major pathologies including cancer, promotes tumorigenesis, inactivating tumor-suppressor genes and activating oncogenic pathways. AMP-activated protein kinase (AMPK) is a cellular energy sensor that regulates a multitude of biological processes. Although a number of studies have identified the mechanisms by which AMPK regulates cancer growth, the underlying epigenetic mechanisms remain unknown. METHODS The impact of metformin, an AMPK activator, on cervical cancer was evaluated through assessments of cell viability, tumor xenograft model, pan-acetylation analysis, and the role of the AMPK-PCAF-H3K9ac signaling pathway. Using label-free quantitative acetylproteomics and chromatin immunoprecipitation-sequencing (ChIP) technology, the activation of AMPK-induced H3K9 acetylation was further investigated. RESULTS In this study, we found that metformin, acting as an AMPK agonist, activates AMPK, thereby inhibiting the proliferation of cervical cancer both in vitro and in vivo. Mechanistically, AMPK activation induces H3K9 acetylation at epigenetic level, leading to chromatin remodeling in cervical cancer. This also enhances the binding of H3K9ac to the promoter regions of multiple tumor suppressor genes, thereby promoting their transcriptional activation. Furthermore, the absence of PCAF renders AMPK activation incapable of inducing H3K9 acetylation. CONCLUSIONS In conclusion, our findings demonstrate that AMPK mediates the inhibition of cervical cancer growth through PCAF-dependent H3K9 acetylation. This discovery not only facilitates the clinical application of metformin but also underscores the essential role of PCAF in AMPK activation-induced H3K9 hyperacetylation.
Collapse
Affiliation(s)
- Botao Pan
- Foshan Women and Children Hospital, Foshan, 528000, China
| | - Can Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Jiyan Su
- Foshan Women and Children Hospital, Foshan, 528000, China
| | - Chenglai Xia
- Foshan Women and Children Hospital, Foshan, 528000, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China.
| |
Collapse
|
8
|
Rauf A, Joshi PB, Olatunde A, Hafeez N, Ahmad Z, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M, Viswanathan D, Rajakumar G, Thiruvengadam R. Comprehensive review of the repositioning of non-oncologic drugs for cancer immunotherapy. Med Oncol 2024; 41:122. [PMID: 38652344 DOI: 10.1007/s12032-024-02368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Drug repositioning or repurposing has gained worldwide attention as a plausible way to search for novel molecules for the treatment of particular diseases or disorders. Drug repurposing essentially refers to uncovering approved or failed compounds for use in various diseases. Cancer is a deadly disease and leading cause of mortality. The search for approved non-oncologic drugs for cancer treatment involved in silico modeling, databases, and literature searches. In this review, we provide a concise account of the existing non-oncologic drug molecules and their therapeutic potential in chemotherapy. The mechanisms and modes of action of the repurposed drugs using computational techniques are also highlighted. Furthermore, we discuss potential targets, critical pathways, and highlight in detail the different challenges pertaining to drug repositioning for cancer immunotherapy.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, Maharashtra, 421501, India
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Medinah, Al-Monawara, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dhivya Viswanathan
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Govindasamy Rajakumar
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
9
|
Liu J, Zhang M, Deng D, Zhu X. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials. Arch Pharm Res 2023; 46:389-407. [PMID: 36964307 DOI: 10.1007/s12272-023-01445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.
Collapse
Affiliation(s)
- Jianhong Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
| | - Dan Deng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
10
|
Sanati M, Aminyavari S, Mollazadeh H, Motamed-Sanaye A, Bibak B, Mohtashami E, Teng Y, Afshari AR, Sahebkar A. The Potential Therapeutic Impact of Metformin in Glioblastoma Multiforme. Curr Med Chem 2023; 30:857-877. [PMID: 35796457 DOI: 10.2174/0929867329666220707103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/13/2022] [Accepted: 04/16/2022] [Indexed: 02/08/2023]
Abstract
In terms of frequency and aggressiveness, glioblastoma multiforme (GBM) is undoubtedly the most frequent and fatal primary brain tumor. Despite advances in clinical management, the response to current treatments is dismal, with a 2-year survival rate varying between 6 and 12 percent. Metformin, a derivative of biguanide widely used in treating type 2 diabetes, has been shown to extend the lifespan of patients with various malignancies. There is limited evidence available on the long-term survival of GBM patients who have taken metformin. This research examined the literature to assess the connection between metformin's anticancer properties and GBM development. Clinical findings, together with the preclinical data from animal models and cell lines, are included in the present review. This comprehensive review covers not only the association of hyperactivation of the AMPK pathway with the anticancer activity of metformin but also other mechanisms underpinning its role in apoptosis, cell proliferation, metastasis, as well as its chemo-radio-sensitizing behavior against GBM. Current challenges and future directions for developments and applications of metformin-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Motamed-Sanaye
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322, USA
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zhao Y, Zhao Y, Tian Y, Zhou Y. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox‑LDL‑induced THP‑1 monocytes. Exp Ther Med 2022; 24:636. [PMID: 36160906 PMCID: PMC9468789 DOI: 10.3892/etm.2022.11573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that the formation of foam cells is of vital importance in the process of atherosclerosis. The aim of the present study was to assess the effects of metformin on foam cell formation in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells and explore its associated mechanism of action. Human monocytic THP-1 cells were pretreated with metformin for 2 h and subsequently treated with ox-LDL for 24 h. The data indicated that metformin significantly inhibited lipid accumulation in ox-LDL-treated THP-1 cells by decreasing the expression of scavenger receptor A, cluster of differentiation 36 and adipocyte enhancer-binding protein 1. In addition, metformin increased the expression levels of scavenger receptor B1 and ATP binding cassette transporter G1 and suppresses the esterification of free cholesterol. Furthermore, it markedly inhibited ferroptosis (reflected by the upregulation of glutathione peroxidase glutathione peroxidase 4 and the downregulation of Heme oxygenase-1). In addition, it caused a marked suppression in the expression levels of cysteinyl aspartate specific proteinase-1, IL-1β, NOD-like receptor protein 3, IL-18 secretion and in the levels of oxidative stress. Metformin attenuated the activation of ERK and facilitated the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK). Treatment of THP-1 cells with an ERK inhibitor reversed these effects, while inhibition of AMPK activity exacerbated the effects noted in ox-LDL-treated THP-1 cells. In conclusion, the present study suggested that metformin suppressed foam cell formation, inflammatory responses and inhibited ferroptosis in ox-LDL-treated macrophages via the AMPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yizhen Zhao
- Department of Neurosurgery, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuan Tian
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yang Zhou
- Department of Vascular Surgery, Deyang People's Hospital, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
12
|
Yip KL, Tsai TN, Yang IP, Miao ZF, Chen YC, Li CC, Su WC, Chang TK, Huang CW, Tsai HL, Yeh YS, Wang JY. Metformin Enhancement of Therapeutic Effects of 5-Fluorouracil and Oxaliplatin in Colon Cancer Cells and Nude Mice. Biomedicines 2022; 10:955. [PMID: 35625692 PMCID: PMC9138369 DOI: 10.3390/biomedicines10050955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Studies have demonstrated that metformin has antitumor effects in addition to therapeutic effects on hyperglycemia; however, few studies have explored the effects of metformin in chemotherapy. Therefore, we hypothesized that the administration of metformin would enhance the therapeutic effects of 5-fluorouracil and oxaliplatin (FuOx) to inhibit the growth of colorectal cancer (CRC) cells in vitro and in vivo. The results of our in vitro experiments demonstrated that metformin significantly increased the effects of FuOx with respect to cell proliferation (p < 0.05), colony formation (p < 0.05), and migration (p < 0.01) and induced cell cycle arrest in the G0/G1 phase in HT29 cells and the S phase in SW480 and SW620 cells (p < 0.05). Flow cytometry analysis revealed that metformin combined with FuOx induced late apoptosis (p < 0.05) by mediating mitochondria-related Mcl-1 and Bim protein expression. Furthermore, in vivo, metformin combined with FuOx more notably reduced tumor volume than FuOx or metformin alone did in BALB/c mice (p < 0.05). These findings demonstrate that metformin may act as an adjunctive agent to enhance the chemosensitivity of CRC cells to FuOx. However, further clinical trials are warranted to validate the clinical implications of the findings.
Collapse
Affiliation(s)
- Kwan-Ling Yip
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
| | - Tsen-Ni Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
| | - I-Ping Yang
- Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan;
| | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Sung Yeh
- Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Emergency Medicine, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.Y.); (T.-N.T.); (Z.-F.M.); (Y.-C.C.); (C.-C.L.); (W.-C.S.); (T.-K.C.); (C.-W.H.); (H.-L.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
| |
Collapse
|