1
|
Škapik IP, Giacomelli C, Hahn S, Deinlein H, Gallant P, Diebold M, Biayna J, Hendricks A, Olimski L, Otto C, Kastner C, Wolf E, Schülein-Völk C, Maurus K, Rosenwald A, Schleussner N, Jackstadt RF, Schlegel N, Germer CT, Bushell M, Eilers M, Schmidt S, Wiegering A. Maintenance of p-eIF2α levels by the eIF2B complex is vital for colorectal cancer. EMBO J 2025; 44:2075-2105. [PMID: 40016419 PMCID: PMC11962125 DOI: 10.1038/s44318-025-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Protein synthesis is an essential process, deregulated in multiple tumor types showing differential dependence on translation factors compared to untransformed tissue. We show that colorectal cancer (CRC) with loss-of-function mutation in the APC tumor suppressor depends on an oncogenic translation program regulated by the ability to sense phosphorylated eIF2α (p-eIF2α). Despite increased protein synthesis rates following APC loss, eIF2α phosphorylation, typically associated with translation inhibition, is enhanced in CRC. Elevated p-eIF2α, and its proper sensing by the decameric eIF2B complex, are essential to balance translation. Knockdown or mutation of eIF2Bα and eIF2Bδ, two eIF2B subunits responsible for sensing p-eIF2α, impairs CRC viability, demonstrating that the eIF2B/p-eIF2α nexus is vital for CRC. Specifically, the decameric eIF2B linked by two eIF2Bα subunits is critical for translating growth-promoting mRNAs which are induced upon APC loss. Depletion of eIF2Bα in APC-deficient murine and patient-derived organoids establishes a therapeutic window, validating eIF2Bα as a target for clinical intervention. In conclusion, we demonstrate how the expression of the oncogenic signature in CRC is crucially controlled at the translational level.
Collapse
Affiliation(s)
- Ivana Paskov Škapik
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Goethe University Frankfurt, University Hospital, Department of General, Visceral, Transplant and Thoracic Surgery, Frankfurt am Main, Germany
| | - Chiara Giacomelli
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sarah Hahn
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Goethe University Frankfurt, University Hospital, Department of General, Visceral, Transplant and Thoracic Surgery, Frankfurt am Main, Germany
| | - Hanna Deinlein
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mathias Diebold
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074, Würzburg, Germany
| | - Josep Biayna
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Anne Hendricks
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Leon Olimski
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Carolin Kastner
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Institute of Biochemistry, CAU Kiel, 24118, Kiel, Germany
| | | | - Katja Maurus
- Institute of Pathology, University of Würzburg, 97074, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, 97074, Würzburg, Germany
| | - Nikolai Schleussner
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, 69120, Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany
| | - Rene-Filip Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Martin Bushell
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Stefanie Schmidt
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany.
| | - Armin Wiegering
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany.
- Goethe University Frankfurt, University Hospital, Department of General, Visceral, Transplant and Thoracic Surgery, Frankfurt am Main, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
2
|
Bottosso M, Mosele F, Michiels S, Cournède PH, Dogan S, Labaki C, André F. Moving toward precision medicine to predict drug sensitivity in patients with metastatic breast cancer. ESMO Open 2024; 9:102247. [PMID: 38401248 PMCID: PMC10982863 DOI: 10.1016/j.esmoop.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Tumor heterogeneity represents a major challenge in breast cancer, being associated with disease progression and treatment resistance. Precision medicine has been extensively applied to dissect tumor heterogeneity and, through a deeper molecular understanding of the disease, to personalize therapeutic strategies. In the last years, technological advances have widely improved the understanding of breast cancer biology and several trials have been developed to translate these new insights into clinical practice, with the ultimate aim of improving patients' outcomes. In the era of molecular oncology, genomics analyses and other methodologies are shaping a new treatment algorithm in breast cancer care. In this manuscript, we review the main steps of precision medicine to predict drug sensitivity in breast cancer from a translational point of view. Genomic developments and their clinical implications are discussed, along with technological advancements that could broaden precision medicine applications. Current achievements are put into perspective to provide an overview of the state-of-art of breast cancer precision oncology as well as to identify future research directions.
Collapse
Affiliation(s)
- M Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - F Mosele
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif
| | - S Michiels
- Gustave Roussy, Department of Biostatistics and Epidemiology, Villejuif; Oncostat U1018, Inserm, Université Paris-Saclay, Ligue Contre le Cancer, Villejuif
| | - P-H Cournède
- Université Paris-Saclay, Centrale Supélec, Laboratory of Mathematics and Computer Science (MICS), Gif-Sur-Yvette, France
| | - S Dogan
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - C Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, USA
| | - F André
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Gif Sur-Yvette, France.
| |
Collapse
|
3
|
Rassomakhina NV, Ryazanova AY, Likhov AR, Bruskin SA, Maloshenok LG, Zherdeva VV. Tumor Organoids: The Era of Personalized Medicine. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S127-S147. [PMID: 38621748 DOI: 10.1134/s0006297924140086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 04/17/2024]
Abstract
The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.
Collapse
Affiliation(s)
- Natalia V Rassomakhina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
4
|
Yoon C, Lu J, Kim BJ, Cho SJ, Kim JH, Moy RH, Ryeom SW, Yoon SS. Patient-Derived Organoids from Locally Advanced Gastric Adenocarcinomas Can Predict Resistance to Neoadjuvant Chemotherapy. J Gastrointest Surg 2023; 27:666-676. [PMID: 36627466 DOI: 10.1007/s11605-022-05568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Patients (pts) with locally advanced gastric adenocarcinoma (LAGA) often receive neoadjuvant chemotherapy. A minority of patients do not respond to chemotherapy and thus may benefit from upfront surgery. Patient-derived organoids (PDOs) are an in vitro model that may mimic the chemotherapy response of the original tumors. METHODS PDOs were generated from endoscopic biopsies of LAGAs prior to the initiation of chemotherapy and treated with the two chemotherapy regimens: FLOT and FOLFOX. Cell proliferation was assayed after 3-6 days. Following chemotherapy, pts underwent surgical resection, and percent pathological necrosis was determined. RESULTS Successful PDOs were obtained from 13 of 24 (54%) LAGAs. Failure to generate PDOs were due to contamination (n = 3, 13%), early senescence (n = 3, 13%), and late senescence (n = 5, 21%). By H&E staining, there were significant similarities in tumor morphology and high concordance in immunohistochemical expression of 6 markers between tumors and derived PDOs. Four of 13 pts with successful PDOs did not undergo chemotherapy and surgery. For the remaining 9 pts, percent necrosis in resected tumors was ≤ 50% in 2 pts. The corresponding PDOs from these 2 pts were clearly chemoresistant outliers. The Pearson correlation coefficient between chemosensitivity of PDOs to FOLFOX (n = 2) or FLOT (n = 7) and percent tumor necrosis in resected tumors was 0.87 (p = 0.003). CONCLUSIONS PDOs from pts with LAGAs in many respects mimic the original tumors from which they are derived and may be used to predict resistance to neoadjuvant chemotherapy. SYNOPSIS Patient-derived organoids (PDOs) can serve as personalized in vitro models of patient tumors. In this study, PDOs from locally advanced gastric cancers were able to reliably predict resistance to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Ju Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Bang-Jin Kim
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Soo-Jeong Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jong Hyun Kim
- Department of Biological Science, Hyupsung University, Hwaseong-Si, South Korea
| | - Ryan H Moy
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Sam S Yoon
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA.
| |
Collapse
|