1
|
Mateo-Victoriano B, Samaranayake GJ, Pokharel S, Sahayanathan GJ, Jayaraj C, Troccoli CI, Watson DC, Mohsen MG, Guo Y, Kool ET, Rai P. Oncogenic KRAS addiction states differentially influence MTH1 expression and 8-oxodGTPase activity in lung adenocarcinoma. Redox Biol 2025; 82:103610. [PMID: 40184641 PMCID: PMC11999683 DOI: 10.1016/j.redox.2025.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
The efficacy of strategies targeting oncogenic RAS, prevalent in lung adenocarcinoma (LUAD), is limited by rapid adaptive resistance mechanisms. These include loss of RAS addiction and hyperactivation of downstream signaling pathways, such as PI3K/AKT. We previously reported that oncogenic RAS-driven LUAD cells possess an enhanced reliance on MTH1, the mammalian 8-oxodGTPase, to prevent genomic incorporation of oxidized nucleotides, and that MTH1 depletion compromises tumorigenesis and oncogenic signaling. Here, we show that elevated MTH1 correlates with poor prognosis in LUAD and that its redox-protective 8-oxodGTPase activity is variably regulated in KRAS-addicted vs. non-addicted states. Multiple oncogenic KRAS mutants or overexpression of wildtype (wt) KRAS increased MTH1 expression. Conversely, KRAS depletion or its inhibition by AMG-510 (sotorasib) decreased MTH1 in KRASG12C-addicted LUAD cells. Separation-of-function MEK/ERK1/2-activating mutants recapitulated the elevated MTH1 expression induced by oncogenic RAS in wt KRAS LUAD cells. However, upon inhibition of the MEK/ERK1/2 pathway, compensatory AKT activation maintained MTH1 expression. Indeed, elevated AKT signaling maintained high MTH1 expression even when KRAS oncoprotein was low. We previously reported that cancer cells possess variable MTH1-specific and MTH1-independent 8-oxodGTPase activity levels. Whereas both ERK1/2 and AKT could regulate MTH1 protein levels in KRAS-addicted cells, only AKT signaling was associated with elevated MTH1-specific 8-oxodGTPase activity under KRAS-low or KRAS non-addicted states. Our studies suggest that despite loss of KRAS dependency, LUAD cells retain the requirement for high MTH1 8-oxodGTPase activity due to redox vulnerabilities associated with AKT signaling. Thus, MTH1 may serve as a novel orthogonal vulnerability in LUAD that has lost KRAS addiction.
Collapse
Affiliation(s)
- Beatriz Mateo-Victoriano
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Govindi J Samaranayake
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sheela Pokharel
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gracy Jenifer Sahayanathan
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christina Jayaraj
- College of Arts and Sciences, University of Miami, Coral Gables, FL, 33146, USA
| | - Clara I Troccoli
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dionysios C Watson
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Michael G Mohsen
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yan Guo
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Priyamvada Rai
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Muradi Muhar A, Velaro AJ, Prananda AT, Nugraha SE, Halim P, Syahputra RA. Precision medicine in colorectal cancer: genomics profiling and targeted treatment. Front Pharmacol 2025; 16:1532971. [PMID: 40083375 PMCID: PMC11903709 DOI: 10.3389/fphar.2025.1532971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Precision medicine has revolutionized the treatment of colorectal cancer by enabling a personalized approach tailored to each patient's unique genetic characteristics. Genomic profiling allows for the identification of specific mutations in genes such as KRAS, BRAF, and PIK3CA, which play a crucial role in cell signaling pathways that regulate cell proliferation, apoptosis, and differentiation. This information enables doctors to select targeted therapies that inhibit specific molecular pathways, maximizing treatment effectiveness and minimizing side effects. Precision medicine also facilitates adaptive monitoring of tumor progression, allowing for adjustments in therapy to maintain treatment effectiveness. While challenges such as high costs, limited access to genomic technology, and the need for more representative genomic data for diverse populations remain, collaboration between researchers, medical practitioners, policymakers, and the pharmaceutical industry is crucial to ensure that precision medicine becomes a standard of care accessible to all. With continued advances and support, precision medicine has the potential to improve treatment outcomes, reduce morbidity and mortality rates, and enhance the quality of life for colorectal cancer patients worldwide.
Collapse
Affiliation(s)
- Adi Muradi Muhar
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adrian Joshua Velaro
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Arya Tjipta Prananda
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
3
|
Sevrin T, Imoto H, Robertson S, Rauch N, Dyn'ko U, Koubova K, Wynne K, Kolch W, Rukhlenko OS, Kholodenko BN. Cell-specific models reveal conformation-specific RAF inhibitor combinations that synergistically inhibit ERK signaling in pancreatic cancer cells. Cell Rep 2024; 43:114710. [PMID: 39240715 PMCID: PMC11474227 DOI: 10.1016/j.celrep.2024.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 09/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges for targeted clinical interventions due to prevalent KRAS mutations, rendering PDAC resistant to RAF and MEK inhibitors (RAFi and MEKi). In addition, responses to targeted therapies vary between patients. Here, we explored the differential sensitivities of PDAC cell lines to RAFi and MEKi and developed an isogenic pair comprising the most sensitive and resistant PDAC cells. To simulate patient- or tumor-specific variations, we constructed cell-line-specific mechanistic models based on protein expression profiling and differential properties of KRAS mutants. These models predicted synergy between two RAFi with different conformation specificity (type I½ and type II RAFi) in inhibiting phospho-ERK (ppERK) and reducing PDAC cell viability. This synergy was experimentally validated across all four studied PDAC cell lines. Our findings underscore the need for combination approaches to inhibit the ERK pathway in PDAC.
Collapse
Affiliation(s)
- Thomas Sevrin
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Hiroaki Imoto
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sarah Robertson
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Uscinnia Dyn'ko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Katerina Koubova
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Martins F, Machado AL, Ribeiro A, Oliveira SM, Carvalho J, Matthiesen R, Backman V, Velho S. KRAS silencing alters chromatin physical organization and transcriptional activity in colorectal cancer cells. RESEARCH SQUARE 2024:rs.3.rs-3752760. [PMID: 38410476 PMCID: PMC10896403 DOI: 10.21203/rs.3.rs-3752760/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Clinical data revealed that KRAS mutant tumors, while initially sensitive to treatment, rapidly bypass KRAS dependence to acquire a drug-tolerant phenotype. However, the mechanisms underlying the transition from a drug-sensitive to a drug-tolerant state still elude us. Here, we show that global chromatin reorganization is a recurrent and specific feature of KRAS-dependent cells that tolerated KRAS silencing. We show that KRAS-dependent cells undergo G0/G1 cell cycle arrest after KRAS silencing, presenting a transcriptomic signature of quiescence. Proteomic analysis showed upregulated chromatin-associated proteins and transcription-associated biological processes. Accordingly, these cells shifted euchromatin/heterochromatin states, gained topologically associating domains, and altered the nanoscale physical organization of chromatin, more precisely by downregulating chromatin packing domains, a feature associated with the induction of quiescence. In addition, they also accumulated transcriptional alterations over time leading to a diversification of biological processes, linking chromatin alterations to transcriptional performance. Overall, our observations pinpoint a novel molecular mechanism of tolerance to KRAS oncogenic loss driven not by specific gene alterations but by global reorganization of genomic information, in which cells transition chromatin domain structure towards a more quiescent state and gain transcriptional reprogramming capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sérgia Velho
- i3S - Institute for Research and Innovation in Health
| |
Collapse
|
5
|
Pang X, Cui D, Lv B, Wang CY. Discovery of Potent SOS1 PROTACs with Effective Antitumor Activities against NCI-H358 Tumor Cells In Vitro/In Vivo. J Med Chem 2024; 67:1563-1579. [PMID: 38206836 DOI: 10.1021/acs.jmedchem.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Directly targeted KRAS inhibitors are now facing resistance problems, which might be partially solved by the combination of SOS1 inhibitors with KRAS inhibitors. However, this combination may still have some resistance mitigation potential. Comparatively, SOS1 PROTAC may have promising applications in addressing the drug resistance problem by degrading the SOS1 protein. Herein, we report the discovery of novel SOS1 PROTACs and their antitumor activity both in vitro and in vivo. In vitro studies demonstrated that degrader 4 had strong inhibitory effects on the proliferation of NCI-H358 cells with IC50 of 5 nM, together with significant degradation of SOS1 protein with DC50 of 13 nM. In the NCI-H358 xenograft model, degrader 4 exhibited significant antitumor activities with TGITV values of 58.8% at 30 mg/kg bid. The PK and safety profiles also supported degrader 4 for further studies as an effective tool compound.
Collapse
Affiliation(s)
- Xudong Pang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Dawei Cui
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Binhua Lv
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Prahallad A, Weiss A, Voshol H, Kerr G, Sprouffske K, Yuan T, Ruddy D, Meistertzheim M, Kazic-Legueux M, Kottarathil T, Piquet M, Cao Y, Martinuzzi-Duboc L, Buhles A, Adler F, Mannino S, Tordella L, Sansregret L, Maira SM, Graus Porta D, Fedele C, Brachmann SM. CRISPR Screening Identifies Mechanisms of Resistance to KRASG12C and SHP2 Inhibitor Combinations in Non-Small Cell Lung Cancer. Cancer Res 2023; 83:4130-4141. [PMID: 37934115 PMCID: PMC10722132 DOI: 10.1158/0008-5472.can-23-1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Although KRASG12C inhibitors show clinical activity in patients with KRAS G12C mutated non-small cell lung cancer (NSCLC) and other solid tumor malignancies, response is limited by multiple mechanisms of resistance. The KRASG12C inhibitor JDQ443 shows enhanced preclinical antitumor activity combined with the SHP2 inhibitor TNO155, and the combination is currently under clinical evaluation. To identify rational combination strategies that could help overcome or prevent some types of resistance, we evaluated the duration of tumor responses to JDQ443 ± TNO155, alone or combined with the PI3Kα inhibitor alpelisib and/or the cyclin-dependent kinase 4/6 inhibitor ribociclib, in xenograft models derived from a KRASG12C-mutant NSCLC line and investigated the genetic mechanisms associated with loss of response to combined KRASG12C/SHP2 inhibition. Tumor regression by single-agent JDQ443 at clinically relevant doses lasted on average 2 weeks and was increasingly extended by the double, triple, or quadruple combinations. Growth resumption was accompanied by progressively increased KRAS G12C amplification. Functional genome-wide CRISPR screening in KRASG12C-dependent NSCLC lines with distinct mutational profiles to identify adaptive mechanisms of resistance revealed sensitizing and rescuing genetic interactions with KRASG12C/SHP2 coinhibition; FGFR1 loss was the strongest sensitizer, and PTEN loss the strongest rescuer. Consistently, the antiproliferative activity of KRASG12C/SHP2 inhibition was strongly enhanced by PI3K inhibitors. Overall, KRAS G12C amplification and alterations of the MAPK/PI3K pathway were predominant mechanisms of resistance to combined KRASG12C/SHP2 inhibitors in preclinical settings. The biological nodes identified by CRISPR screening might provide additional starting points for effective combination treatments. SIGNIFICANCE Identification of resistance mechanisms to KRASG12C/SHP2 coinhibition highlights the need for additional combination therapies for lung cancer beyond on-pathway combinations and offers the basis for development of more effective combination approaches. See related commentary by Johnson and Haigis, p. 4005.
Collapse
Affiliation(s)
| | - Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Tina Yuan
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David Ruddy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | | | - Michelle Piquet
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Yichen Cao
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Flavia Adler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Luca Tordella
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | |
Collapse
|
7
|
Xia Y, Zhang S, Luo H, Wang Y, Jiang Y, Jiang J, Yuan S. Repositioning of Montelukast to inhibit proliferation of mutated KRAS pancreatic cancer through a novel mechanism that interfere the binding between KRAS and GTP/GDP. Eur J Pharmacol 2023; 961:176157. [PMID: 37939992 DOI: 10.1016/j.ejphar.2023.176157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic cancer is one of the most lethal cancer types with 5-year survival rate of ∼10.8%. Various KRAS mutations exist in ∼85% pancreatic cancer cell lines. Mutated KRAS is a major cause that leads cancer cell proliferation. Chemotherapy is still the major treatment for pancreatic cancer. Alternatively, repositioning old drug to inhibit mutated KRAS may be a cost-effective way for pancreatic cancer treatment. In this study, we choose mutated KRAS (G12D) as a target. Based on mutated KRAS GTP binding domain (hydrolyze GTP to GDP), we perform virtual screening on FDA-approved drugs. Montelukast shows strong binding affinity to mutated KRAS as well as interfering both GTP and GDP binding to mutated KRAS. Furthermore, Montelukast shows very strong anti-proliferation effect on mutated KRAS pancreatic cancer cells both in vitro and in vivo. Our results support repositioning of Montelukast as single agent for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yannan Xia
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Shujie Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Hongyi Luo
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Yumeng Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Yuanyuan Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Jingwei Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China; Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, China.
| | - Shengtao Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China.
| |
Collapse
|
8
|
Batrash F, Kutmah M, Zhang J. The current landscape of using direct inhibitors to target KRAS G12C-mutated NSCLC. Exp Hematol Oncol 2023; 12:93. [PMID: 37925476 PMCID: PMC10625227 DOI: 10.1186/s40164-023-00453-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Mutation in KRAS protooncogene represents one of the most common genetic alterations in NSCLC and has posed a great therapeutic challenge over the past ~ 40 years since its discovery. However, the pioneer work from Shokat's lab in 2013 has led to a recent wave of direct KRASG12C inhibitors that utilize the switch II pocket identified. Notably, two of the inhibitors have recently received US FDA approval for their use in the treatment of KRASG12C mutant NSCLC. Despite this success, there remains the challenge of combating the resistance that cell lines, xenografts, and patients have exhibited while treated with KRASG12C inhibitors. This review discusses the varying mechanisms of resistance that limit long-lasting effective treatment of those direct inhibitors and highlights several novel therapeutic approaches including a new class of KRASG12C (ON) inhibitors, combinational therapies across the same and different pathways, and combination with immunotherapy/chemotherapy as possible solutions to the pressing question of adaptive resistance.
Collapse
Affiliation(s)
- Firas Batrash
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Mahmoud Kutmah
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Ramalingam PS, Priyadharshini A, Emerson IA, Arumugam S. Potential biomarkers uncovered by bioinformatics analysis in sotorasib resistant-pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 10:1107128. [PMID: 37396909 PMCID: PMC10310804 DOI: 10.3389/fmed.2023.1107128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/11/2023] [Indexed: 07/04/2023] Open
Abstract
Background Mutant KRAS-induced tumorigenesis is prevalent in lung, colon, and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants seem undruggable due to their high-affinity GTP-binding pocket and smooth surface. Structure-based drug design helped in the design and development of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then approved by the FDA. Recent reports state that AMG 510 is becoming resistant in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and lung adenocarcinoma patients, and the crucial drivers involved in this resistance mechanism are unknown. Methods In recent years, RNA-sequencing (RNA-seq) data analysis has become a functional tool for profiling gene expression. The present study was designed to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then subjected to differentially expressed gene (DEG) analysis using the limma package. Then the identified DEGs were subjected to protein-protein interaction (PPI) using the STRING database, followed by cluster analysis and hub gene analysis, which resulted in the identification of probable markers. Results Furthermore, the enrichment and survival analysis revealed that the small unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG 510 resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Conclusion Finally, we conclude that RPS3 is a crucial biomarker in sotorasib resistance which evades apoptosis by MDM2/4 interaction. We also suggest that the combinatorial treatment of sotorasib and RNA polymerase I machinery inhibitors could be a possible strategy to overcome resistance and should be studied in in vitro and in vivo settings in near future.
Collapse
Affiliation(s)
| | - Annadurai Priyadharshini
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
10
|
Tammaccaro SL, Prigent P, Le Bail JC, Dos-Santos O, Dassencourt L, Eskandar M, Buzy A, Venier O, Guillemot JC, Veeranagouda Y, Didier M, Spanakis E, Kanno T, Cesaroni M, Mathieu S, Canard L, Casse A, Windenberger F, Calvet L, Noblet L, Sidhu S, Debussche L, Moll J, Valtingojer I. TEAD Inhibitors Sensitize KRASG12C Inhibitors via Dual Cell Cycle Arrest in KRASG12C-Mutant NSCLC. Pharmaceuticals (Basel) 2023; 16:ph16040553. [PMID: 37111311 PMCID: PMC10142471 DOI: 10.3390/ph16040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
KRASG12C is one of the most common mutations detected in non-small cell lung cancer (NSCLC) patients, and it is a marker of poor prognosis. The first FDA-approved KRASG12C inhibitors, sotorasib and adagrasib, have been an enormous breakthrough for patients with KRASG12C mutant NSCLC; however, resistance to therapy is emerging. The transcriptional coactivators YAP1/TAZ and the family of transcription factors TEAD1-4 are the downstream effectors of the Hippo pathway and regulate essential cellular processes such as cell proliferation and cell survival. YAP1/TAZ-TEAD activity has further been implicated as a mechanism of resistance to targeted therapies. Here, we investigate the effect of combining TEAD inhibitors with KRASG12C inhibitors in KRASG12C mutant NSCLC tumor models. We show that TEAD inhibitors, while being inactive as single agents in KRASG12C-driven NSCLC cells, enhance KRASG12C inhibitor-mediated anti-tumor efficacy in vitro and in vivo. Mechanistically, the dual inhibition of KRASG12C and TEAD results in the downregulation of MYC and E2F signatures and in the alteration of the G2/M checkpoint, converging in an increase in G1 and a decrease in G2/M cell cycle phases. Our data suggest that the co-inhibition of KRASG12C and TEAD leads to a specific dual cell cycle arrest in KRASG12C NSCLC cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Armelle Buzy
- Bio Structure and Biophysics, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Olivier Venier
- Small Molecules Medicinal Chemistry, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Jean-Claude Guillemot
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Yaligara Veeranagouda
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Michel Didier
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | | | - Tokuwa Kanno
- Precision Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Matteo Cesaroni
- Precision Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Stephane Mathieu
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Luc Canard
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Alhassan Casse
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Fanny Windenberger
- Non-Clinical Efficacy and Safety, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | | | | | | | | | - Jurgen Moll
- Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | | |
Collapse
|
11
|
Salmón M, Álvarez-Díaz R, Fustero-Torre C, Brehey O, Lechuga CG, Sanclemente M, Fernández-García F, López-García A, Martín-Guijarro MC, Rodríguez-Perales S, Bousquet-Mur E, Morales-Cacho L, Mulero F, Al-Shahrour F, Martínez L, Domínguez O, Caleiras E, Ortega S, Guerra C, Musteanu M, Drosten M, Barbacid M. Kras oncogene ablation prevents resistance in advanced lung adenocarcinomas. J Clin Invest 2023; 133:e164413. [PMID: 36928090 PMCID: PMC10065067 DOI: 10.1172/jci164413] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.
Collapse
Affiliation(s)
- Marina Salmón
- Experimental Oncology Group, Molecular Oncology Program
| | | | | | - Oksana Brehey
- Experimental Oncology Group, Molecular Oncology Program
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sagrario Ortega
- Mouse Genome Editing Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Monica Musteanu
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas–Universidad de Salamanca (CSIC-USAL), Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Rafael D, Montero S, Carcavilla P, Andrade F, German-Cortés J, Diaz-Riascos ZV, Seras-Franzoso J, Llaguno M, Fernández B, Pereira A, Duran-Lara EF, Schwartz S, Abasolo I. Intracellular Delivery of Anti-Kirsten Rat Sarcoma Antibodies Mediated by Polymeric Micelles Exerts Strong In Vitro and In Vivo Anti-Tumorigenic Activity in Kirsten Rat Sarcoma-Mutated Cancers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10398-10413. [PMID: 36795046 DOI: 10.1021/acsami.2c19897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Kirsten rat sarcoma viral oncogene (KRAS) is one of the most well-known proto-oncogenes, frequently mutated in pancreatic and colorectal cancers, among others. We hypothesized that the intracellular delivery of anti-KRAS antibodies (KRAS-Ab) with biodegradable polymeric micelles (PM) would block the overactivation of the KRAS-associated cascades and revert the effect of its mutation. To this end, PM-containing KRAS-Ab (PM-KRAS) were obtained using Pluronic F127. The feasibility of using PM for antibody encapsulation as well as the conformational change of the polymer and its intermolecular interactions with the antibodies was studied, for the first time, using in silico modeling. In vitro, encapsulation of KRAS-Ab allowed their intracellular delivery in different pancreatic and colorectal cancer cell lines. Interestingly, PM-KRAS promoted a high proliferation impairment in regular cultures of KRAS-mutated HCT116 and MIA PaCa-2 cells, whereas the effect was neglectable in non-mutated or KRAS-independent HCT-8 and PANC-1 cancer cells, respectively. Additionally, PM-KRAS induced a remarkable inhibition of the colony formation ability in low-attachment conditions in KRAS-mutated cells. In vivo, when compared with the vehicle, the intravenous administration of PM-KRAS significantly reduced tumor volume growth in HCT116 subcutaneous tumor-bearing mice. Analysis of the KRAS-mediated cascade in cell cultures and tumor samples showed that the effect of PM-KRAS was mediated by a significant reduction of the ERK phosphorylation and a decrease in expression in the stemness-related genes. Altogether, these results unprecedently demonstrate that the delivery of KRAS-Ab mediated by PM can safely and effectively reduce the tumorigenicity and the stemness properties of KRAS-dependent cells, thus bringing up new possibilities to reach undruggable intracellular targets.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Sara Montero
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Pilar Carcavilla
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Fernanda Andrade
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Júlia German-Cortés
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Zamira V Diaz-Riascos
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Monserrat Llaguno
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Begoña Fernández
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Alfredo Pereira
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Metropolitan Region 8380492, Chile
| | - Esteban F Duran-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca, Maule 1141, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, P.O. Box 747, Talca, Maule 1141, Chile
| | - Simó Schwartz
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| |
Collapse
|
13
|
EMT, Stemness, and Drug Resistance in Biological Context: A 3D Tumor Tissue/In Silico Platform for Analysis of Combinatorial Treatment in NSCLC with Aggressive KRAS-Biomarker Signatures. Cancers (Basel) 2022; 14:cancers14092176. [PMID: 35565305 PMCID: PMC9099837 DOI: 10.3390/cancers14092176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The phenotypic transition of tumor cells from epithelial to mesenchymal characteristics is called EMT and is widely discussed in the scientific community as a game changer in drug resistance and metastasis formation. However, clinical studies could not prove the efficacy of EMT-interfering treatments, and in clinical routine, EMT is not investigated to assess invasion. To fill this gap between bench and bedside, we use in this study a lung tumor tissue model with a preserved basement membrane for investigation of EMT functions with respect to invasion across this membrane and drug resistance. Our results suggest EMT is more a marker of drug resistance than a maker. Invasion is enhanced by EMT but more dependent on intrinsic factors, and EMT is not detected in the center of invasive tumor nodules. An in silico signaling network model is used to integrate these in vitro results and to reveal determinants for drug response. Abstract Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRASG12C or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRASG12C inhibitor in KRASG12C mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.
Collapse
|
14
|
Sunaga N, Miura Y, Kasahara N, Sakurai R. Targeting Oncogenic KRAS in Non-Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13235956. [PMID: 34885068 PMCID: PMC8656763 DOI: 10.3390/cancers13235956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS) is the most common driver in NSCLC, and targeting oncogenic KRAS is a major challenge in the treatment of non-small-cell lung cancer (NSCLC). While several covalent KRAS G12C inhibitors have emerged as a novel anti-KRAS therapy, the development of combined therapies involving the targeting of oncogenic KRAS plus other targeted drugs is still required given the vast heterogeneity of KRAS-mutated tumors. In this review, we summarize the biological and immunological characteristics of oncogenic KRAS-driven NSCLC and the preclinical and clinical evidence for mutant KRAS-targeted therapies. We also discuss the mechanisms of resistance to KRAS G12C inhibitors and possible therapeutic strategies to overcome this drug resistance. Abstract Recent advances in molecular biology and the resultant identification of driver oncogenes have achieved major progress in precision medicine for non-small-cell lung cancer (NSCLC). v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS) is the most common driver in NSCLC, and targeting KRAS is considerably important. The recent discovery of covalent KRAS G12C inhibitors offers hope for improving the prognosis of NSCLC patients, but the development of combination therapies corresponding to tumor characteristics is still required given the vast heterogeneity of KRAS-mutated NSCLC. In this review, we summarize the current understanding of KRAS mutations regarding the involvement of malignant transformation and describe the preclinical and clinical evidence for targeting KRAS-mutated NSCLC. We also discuss the mechanisms of resistance to KRAS G12C inhibitors and possible combination treatment strategies to overcome this drug resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence: ; Tel.: +81-27-220-8000
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Norimitsu Kasahara
- Innovative Medical Research Center, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|