1
|
Tang R, Luo S, Liu H, Sun Y, Liu M, Li L, Ren H, Angele MK, Börner N, Yu K, Guo Z, Yin G, Luo H. Circulating Tumor Microenvironment in Metastasis. Cancer Res 2025; 85:1354-1367. [PMID: 39992721 PMCID: PMC11997552 DOI: 10.1158/0008-5472.can-24-1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Activation of invasion and metastasis is a central hallmark of cancer, contributing to the primary cause of death for patients with cancer. In the multistep metastatic process, cancer cells must infiltrate the circulation, survive, arrest at capillary beds, extravasate, and form metastatic clones in distant organs. However, only a small proportion of circulating tumor cells (CTC) successfully form metastases, with transit of CTCs in the circulation being the rate-limiting step. The fate of CTCs is influenced by the circulating tumor microenvironment (cTME), which encompasses factors affecting their biological behaviors in the circulation. This liquid and flowing microenvironment differs significantly from the primary TME or the premetastatic niche. This review summarizes the latest advancements in identifying the biophysical cues, key components, and biological roles of the cTME, highlighting the network among biophysical attributes, blood cells, and nonblood factors in cancer metastasis. In addition to the potential of the cTME as a therapeutic target for inhibiting metastasis, the cTME could also represent as a biomarker for predicting patient outcomes and developing strategies for treating cancer.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shujuan Luo
- Department of Obstetrics, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haoyu Ren
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Martin K. Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Keda Yu
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Guobing Yin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haojun Luo
- Department of Thyroid and Breast Surgery, Renji Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Benje M, Vitacchio T, Fritsche D, Tinganelli W. Gene Expression Profiling and Phenotypic Characterization of Circulating Tumor Cells Derived from a Murine Osteosarcoma Model. Cancers (Basel) 2025; 17:1210. [PMID: 40227761 PMCID: PMC11988136 DOI: 10.3390/cancers17071210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Osteosarcoma is an aggressive bone malignancy with high metastatic potential to the lungs. CTCs, as seeds of metastasis, play an important role in the spread of this cancer, and, therefore, their isolation, culture, and gene expression analysis promises valuable insights into the progression and metastatic cascade of osteosarcoma. The aim of this study was to isolate and culture CTCs from osteosarcoma-bearing mice and compare their migration, radioresistance, and gene expression with their parental cell line. METHODS CTCs from LM8-inoculated mice were isolated and cultured. The gene expression of the CTC-derived cell lines was then compared to the parental cell line. Furthermore, a Transwell assay, a clonogenic assay after irradiation, and immunohistochemical stainings were used to compare the CTC-derived cell lines with the parental cell line. RESULTS The CTC-derived cell lines differed significantly in gene expression from their parental cell line. 361 differentially expressed genes were identified, among which GO and KEGG analysis revealed major differences in the expression of genes related to antigen processing and presentation and extracellular matrix constituents. In addition, the CTC-derived cell lines were observed to have a higher migratory capacity and comparable radioresistance compared to the parental cell line. CD44 expression was found to be conserved in CTC-derived cell lines. CONCLUSIONS This study provides a comparison between CTC-derived and their parental cell lines in terms of gene expression, migration, and radioresistance. Our findings allow for further research in the field of osteosarcoma CTCs and their generation. Furthermore, the identified DEGs between CTCs and their parental cell line can serve as a reference point for targeted therapies against osteosarcoma CTCs.
Collapse
Affiliation(s)
| | | | | | - Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (M.B.); (T.V.)
| |
Collapse
|
3
|
Yang J, Xu P, Zhang G, Wang D, Ye B, Wu L. Advances and potentials in platelet-circulating tumor cell crosstalk. Am J Cancer Res 2025; 15:407-425. [PMID: 40084364 PMCID: PMC11897628 DOI: 10.62347/jayk5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Tumor metastasis leads to circulating tumor cells (CTCs) that separate from primary malignant tumors and enter blood circulation. CTCs survive and engage with other cells to cope with obstacles, including shear stress, disease, immune attacks, and drugs. Platelets are the best partners for CTCs. Platelets provide a good protective layer for CTCs to ensure that are not monitored and cleared by the native immune system, and protected from shear stress and survive better. Here, we review current reports on platelet-CTC interaction and the clinical relevance of their combination and summarize new techniques for CTC capture and treatment based on platelet-CTC interaction. We discuss current data, identify its shortcomings, and suggest future developments.
Collapse
Affiliation(s)
- Jie Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Bo Ye
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Lichun Wu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| |
Collapse
|
4
|
Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM, Mendoza-Almanza G, Cortés-Ramírez SA, Losada-García A, Rodríguez-Martínez G, González-Ramírez I, Maldonado-Lagunas V, Vazquez-Santillan K, González-Covarrubias V, Pérez-Plasencia C, Rodríguez-Dorantes M. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomark Res 2025; 13:27. [PMID: 39934930 DOI: 10.1186/s40364-025-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Platelets, anucleate blood cells essential for hemostasis, are increasingly recognized for their role in cancer, challenging the traditional notion of their sole involvement in blood coagulation. It has been demonstrated that platelets establish bidirectional communication with tumor cells, contributing to tumor progression and metastasis through diverse molecular mechanisms such as modulation of proliferation, angiogenesis, epithelial-mesenchymal transition, resistance to anoikis, immune evasion, extravasation, chemoresistance, among other processes. Reciprocally, cancer significantly alters platelets in their count and composition, including mRNA, non-coding RNA, proteins, and lipids, product of both internal synthesis and the uptake of tumor-derived molecules. This phenomenon gives rise to tumor-educated platelets (TEPs), which are emerging as promising tools for the development of liquid biopsies. In this review, we provide a detailed overview of the dynamic roles of platelets in tumor development and progression as well as their use in diagnosis and prognosis. We also provide our view on current limitations, challenges and future research areas, including the need to design more efficient strategies for their isolation and analysis, as well as the validation of their sensitivity and specificity through large-scale and rigorous clinical trials. This research will not only enable the evaluation of their clinical viability but could also open new opportunities to enhance diagnostic accuracy and develop personalized treatments in oncology.
Collapse
Affiliation(s)
- Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Miguel Valenzuela-Mayen
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | | | - Gretel Mendoza-Almanza
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Sergio A Cortés-Ramírez
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alberto Losada-García
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
- Laboratorio de Investigación en Patógenos Respiratorios y Producción de Biológicos, Hospital Infantil de México Federico Gómez, Mexico City, 14610, Mexico
| | - Imelda González-Ramírez
- Departamento de Atención a La Salud, Universidad Autónoma Metropolitana Xochimilco, Mexico City, 14610, Mexico
| | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Karla Vazquez-Santillan
- Laboratorio de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Vanessa González-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla, 54090, Mexico
| | | |
Collapse
|
5
|
Arnault JP, Chemmama K, Ferroudj K, Demagny J, Panicot-Dubois L, Galmiche A, Saidak Z. The Dynamic Landscape of the Coagulome of Metastatic Malignant Melanoma. Int J Mol Sci 2025; 26:1435. [PMID: 40003901 PMCID: PMC11855523 DOI: 10.3390/ijms26041435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The local expression of coagulation-related genes defines the tumor coagulome. The tumor coagulome plays a pivotal role in cancer-associated thrombosis (CAT) and hemostatic complications, such as venous thromboembolism (VTE), which are frequent in patients with advanced/metastatic cancer. Genomic analyses of human tumors, such as skin cutaneous melanoma (SKCM), have unveiled the complexity of the metastatic trajectories. However, no study to date has focused on the metastatic coagulome along these trajectories. Using bulk-tumor and single-cell analyses of primary SKCM, metastastic samples and circulating tumor cells (CTCs), we explored the coagulome of SKCM along metastatic progression. We identified consistent changes in the coagulome of SKCM metastases compared to primary tumors and observed metastatic site specificity. Compared to other metastatic sites, lung metastases of SKCM had a specific coagulome with a higher expression of F3, encoding Tissue Factor. Single-cell analyses were used to chart the inter- and intra-tumor heterogeneity and characterize the metastatic coagulome of SKCM. We found that a subpopulation of CTCs from SKCM expressed high levels of platelet genes, suggesting the contribution of CTC-platelet interactions to the CTC coagulome. These findings highlight the dynamic properties of the metastatic coagulome and its link to cancer progression.
Collapse
Affiliation(s)
- Jean-Philippe Arnault
- Service de Dermatologie, CHU Amiens, 80054 Amiens, France;
- UR7516 CHIMERE, UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France; (K.F.); (Z.S.)
| | - Kimberley Chemmama
- Service de Biochimie, Centre de Biologie Humaine, CHU Amiens, 80054 Amiens, France;
| | - Khedidja Ferroudj
- UR7516 CHIMERE, UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France; (K.F.); (Z.S.)
| | - Julien Demagny
- Service d’Hématologie Biologique, Centre de Biologie Humaine, CHU Amiens, 80054 Amiens, France;
| | | | - Antoine Galmiche
- UR7516 CHIMERE, UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France; (K.F.); (Z.S.)
- Service de Biochimie, Centre de Biologie Humaine, CHU Amiens, 80054 Amiens, France;
| | - Zuzana Saidak
- UR7516 CHIMERE, UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France; (K.F.); (Z.S.)
- Service de Biochimie, Centre de Biologie Humaine, CHU Amiens, 80054 Amiens, France;
| |
Collapse
|
6
|
Gautam D, Clarke EM, Roweth HG, Smith MR, Battinelli EM. Platelets and circulating (tumor) cells: partners in promoting metastatic cancer. Curr Opin Hematol 2025; 32:52-60. [PMID: 39508182 DOI: 10.1097/moh.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW Despite being discovered decades ago, metastasis remains a formidable challenge in cancer treatment. During the intermediate phase of metastasis, tumor cells detach from primary tumor or metastatic sites and travel through the bloodstream and lymphatic system to distant tissues. These tumor cells in the circulation are known as circulating tumor cells (CTCs), and a higher number of CTCs has been linked to poor prognoses in various cancers. The blood is an inhospitable environment for any foreign cells, including CTCs, as they face numerous challenges, such as the shear stress within blood vessels and their interactions with blood and immune cells. However, the exact mechanisms by which CTCs survive the hostile conditions of the bloodstream remain enigmatic. Platelets have been studied for their interactions with tumor cells, promoting their survival, growth, and metastasis. This review explores the latest clinical methods for enumerating CTCs, recent findings on platelet-CTC crosstalk, and current research on antiplatelet therapy as a potential strategy to inhibit metastasis, offering new therapeutic insights. RECENT FINDINGS Laboratory and clinical data have provided insights into the role of platelets in promoting CTC survival, while clinical advancements in CTC enumeration offer improved prognostic tools. SUMMARY CTCs play a critical role in metastasis, and their interactions with platelets aid their survival in the hostile environment of the bloodstream. Understanding this crosstalk offers insights into potential therapeutic strategies, including antiplatelet therapy, to inhibit metastasis and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M Clarke
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
| | - Harvey G Roweth
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret R Smith
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Kottana RK, Schnoor B, Papa A. A method to quantitatively characterize the formation and dissociation of tumor cell clusters using light transmission aggregometry. Mol Oncol 2025; 19:37-55. [PMID: 39234921 PMCID: PMC11705735 DOI: 10.1002/1878-0261.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/02/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024] Open
Abstract
In this paper, we have modified the workflow of the traditional light transmission aggregometry (LTA) protocol to characterize tumor cell clusters in vitro in a quantifiable and multifaceted manner. Circulating tumor cell (CTC) clusters have high metastatic potential compared to single tumor cells traveling in the bloodstream. Thus, engineering new therapeutic strategies that specifically target this CTC population is essential. To accomplish this, quantifiable methods to characterize their therapeutic effect on tumor cell clusters is a prerequisite. The method presented here enables the user to precisely quantify the dissociation of cancer cell clusters in the presence of clinically relevant fibrinolytic agents, such as alteplase and tenecteplase. The efficacy of the fibrinolytic agents can be quantified using this in vitro assay, prior to conducting preclinical studies. Here, we have obtained the fibrinolytic activity data in terms of lag time to the initiation of tumor cell dissociation, time to 25% dissociation, and trend of dissociation over time. To validate the assay, cell counts and phase-contrast microscopy images were recorded over time. Further, we explored an LTA-assisted preparation of platelet-tumor-cell clusters of calibrated size for potential downstream testing/applications. To assess whether the assay is applicable to characterize the dissociation of cancer cell clusters in the presence of platelets, we added low (50 000 platelets·μL-1), normal (200 000 platelets·μL-1) and high (450 000 platelets·μL-1) concentrations of platelets to the tumor cell clusters. In addition to dissociation parameters, microcopy images were recorded over time to validate the assay and enabled the enumeration of clusters and single cells. The correlative light electron microscopy (CLEM) technique was utilized to visualize the morphology and composition of platelet-tumor cell clusters.
Collapse
Affiliation(s)
- Regina Komal Kottana
- Department of Biomedical Engineering, School of Engineering and Applied ScienceThe George Washington UniversityWashingtonDCUSA
| | - Brian Schnoor
- Department of Biomedical Engineering, School of Engineering and Applied ScienceThe George Washington UniversityWashingtonDCUSA
| | - Anne‐Laure Papa
- Department of Biomedical Engineering, School of Engineering and Applied ScienceThe George Washington UniversityWashingtonDCUSA
| |
Collapse
|
8
|
Zhou Z, Cai S, Zhou X, Zhao W, Sun J, Zhou Z, Yang Z, Li W, Wang Z, Zou H, Fu H, Wang X, Khoo BL, Yang M. Circulating Tumor Cells Culture: Methods, Challenges, and Clinical Applications. SMALL METHODS 2024:e2401026. [PMID: 39726345 DOI: 10.1002/smtd.202401026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers. Furthermore, research based on CTC cell lines serves as a valuable complement to traditional cancer cell line-based research. While numerous reports exist on CTC in vitro culture and even the establishment of CTC cell lines, the methods used vary, leading to disparate culture outcomes. This review presents the developmental history and current status of CTC in vitro culture research. Additionally, the culture strategies applied in different methods and analyzed the impact of various steps on culture outcomes are compared. Overall, the review indicates that while the short-term culture of CTCs is relatively straightforward, long-term culture success has been achieved for various specific cancer types but still faces challenges. Further optimization of efficient and widely applicable culture strategies is needed. Additionally, ongoing applications of CTC in vitro culture are summarized, highlighting the potential of expanded CTCs for drug susceptibility testing and as therapeutic tools in personalized treatment.
Collapse
Affiliation(s)
- Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Wei Zhao
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhe Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Heng Zou
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bee Luan Khoo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
9
|
Chernosky NM, Tamagno I, Polak KL, Chan ER, Yuan X, Jackson MW. Toll-Like receptor 3-mediated interferon-β production is suppressed by oncostatin m and a broader epithelial-mesenchymal transition program. Breast Cancer Res 2024; 26:167. [PMID: 39593161 PMCID: PMC11590466 DOI: 10.1186/s13058-024-01918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Patients with Triple Negative Breast Cancer (TNBC) currently lack targeted therapies, and consequently face higher mortality rates when compared to patients with other breast cancer subtypes. The tumor microenvironment (TME) cytokine Oncostatin M (OSM) reprograms TNBC cells to a more stem-like/mesenchymal state, conferring aggressive cancer cell properties such as enhanced migration and invasion, increased tumor-initiating capacity, and intrinsic resistance to the current standards of care. In contrast to OSM, Interferon-β (IFN-β) promotes a more differentiated, epithelial cell phenotype in addition to its role as an activator of anti-tumor immunity. Importantly, OSM suppresses the production of IFN-β, although the mechanism of IFN-β suppression has not yet been elucidated. METHODS IFN-β production and downstream autocrine signaling were assessed via quantitative real-time PCR (qRT-PCR) and Western blotting in TNBC cells following exposure to OSM. RNA-sequencing (RNA-seq) was used to assess an IFN-β metagene signature, and to assess the expression of innate immune sensors, which are upstream activators of IFN-β. Cell migration was assessed using an in vitro chemotaxis assay. Additionally, TNBC cells were exposed to TGF-β1, Snail, and Zeb1, and IFN-β production and downstream autocrine signaling were assessed via RNA-seq, qRT-PCR, and Western blotting. RESULTS Here, we identify the repression of Toll-like Receptor 3 (TLR3), an innate immune sensor, as the key molecular event linking OSM signaling and the repression of IFN-β transcription, production, and autocrine IFN signaling. Moreover, we demonstrate that additional epithelial-mesenchymal transition-inducing factors, such as TGF-β1, Snail, and Zeb1, similarly suppress TLR3-mediated IFN-β production and signaling. CONCLUSIONS Our findings provide a novel insight into the regulation of TLR3 and IFN-β production in TNBC cells, which are known indicators of treatment responses to DNA-damaging therapies. Furthermore, strategies to stimulate TLR3 in order to increase IFN-β within the TME may be ineffective in stem-like/mesenchymal cells, as TLR3 is strongly repressed. Rather, we propose that therapies targeting OSM or OSM receptor would reverse the stem-like/mesenchymal program and restore TLR3-mediated IFN-β production within the TME, facilitating improved responses to current therapies.
Collapse
Affiliation(s)
- Noah M Chernosky
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Ilaria Tamagno
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Kelsey L Polak
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - E Ricky Chan
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, 44106, USA
| | - Xueer Yuan
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Mark W Jackson
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Li Z, Qin C, Zhao B, Li T, Zhao Y, Zhang X, Wang W. Circulating tumor cells in pancreatic cancer: more than liquid biopsy. Ther Adv Med Oncol 2024; 16:17588359241284935. [PMID: 39421679 PMCID: PMC11483845 DOI: 10.1177/17588359241284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that slough off the primary lesions and extravasate into the bloodstream. By forming CTC clusters and interacting with other circulating cells (platelets, NK cells, macrophage, etc.), CTCs are able to survive in the circulatory system of tumor patients and colonize to metastatic organs. In recent years, the potential of CTCs in diagnosis, prognostic assessment, and individualized therapy of various types of tumors has been gradually explored, while advances in biotechnology have made it possible to extract CTCs from patient blood samples. These biological features of CTCs provide us with new insights into cancer vulnerabilities. With the advent of new immunotherapies and personalized medicines, disrupting the heterotypical interaction between CTCs and circulatory cells as well as direct CTCs targeting hold great promise. Pancreatic cancer (PC) is one of the most malignant cancers, in part because of early metastasis, difficult diagnosis, and limited treatment options. Although there is significant potential for CTCs as a biomarker to impact PC from diagnosis to therapy, there still remain a number of challenges to the routine implementation of CTCs in the clinical management of PC. In this review, we summed up the progress made in understanding biological characteristics and exceptional technological advances of CTCs and provided insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing Street Dongcheng District Beijing China, Beijing 100730, China
| |
Collapse
|
11
|
Yang Y, Huang G, Lian J, Long C, Zhao B, Liu X, Zhang B, Ye W, Chen J, Du L, Jiang Z, Liu J, Zhang J, Hu C, Chen Q, Hong X. Circulating tumour cell clusters: isolation, biological significance and therapeutic implications. BMJ ONCOLOGY 2024; 3:e000437. [PMID: 39886139 PMCID: PMC11557725 DOI: 10.1136/bmjonc-2024-000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 01/06/2025]
Abstract
Circulating tumour cells (CTCs) and CTC clusters are considered metastatic precursors due to their ability to seed distant metastasis. However, navigating the bloodstream presents a significant challenge for CTCs, as they must endure fluid shear forces and resist detachment-induced anoikis. Consequently, while a large number of cells from the primary tumour may enter the circulation, only a tiny fraction will result in metastasis. Nevertheless, the metastatic potency dramatically increases when CTCs travel in conjunction with other cell types to form CTC clusters, including neutrophils, myeloid-derived suppressor cells, macrophages, platelets, cancer-associated fibroblasts and red blood cells found in circulation. Such heterotypic CTC clustering events have been identified in a variety of cancer types and may serve as intriguing therapeutic targets and novel biomarkers for liquid biopsy. This review summarises recent advances in microfluidic technologies designed for the isolation of CTC clusters and explores the biological properties of distinct types of CTC clusters within the circulatory system. Investigation of the mechanisms of CTC cluster-blood microenvironment interactions may offer a promising avenue for gaining fresh insights into CTC cluster-mediated metastatic progression and reveal potential opportunities for devising personalised antimetastasis treatments.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guanyin Huang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingru Lian
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chunhao Long
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Boxi Zhao
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xuefei Liu
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Binyu Zhang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weijian Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Junhao Chen
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Longxiang Du
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhuofeng Jiang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jialing Liu
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Hong
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Hapeman JD, Galwa R, Carneiro CS, Nedelcu AM. In vitro evidence for the potential of EGFR inhibitors to decrease the TGF-β1-induced dispersal of circulating tumour cell clusters mediated by EGFR overexpression. Sci Rep 2024; 14:19980. [PMID: 39198539 PMCID: PMC11358385 DOI: 10.1038/s41598-024-70358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer-related deaths are due to the spread of tumour cells throughout the body-a process known as metastasis. While in the vasculature, these cells are referred to as circulating tumour cells (CTCs) and can be found as either single cells or clusters of cells (often including platelets), with the latter having the highest metastatic potential. However, the biology of CTC clusters is poorly understood, and there are no therapies that specifically target them. We previously developed an in vitro model system for CTC clusters and proposed a new extravasation model that involves cluster dissociation, adherence, and single-cell invasion in response to TGF-β1 released by platelets. Here, we investigated TGF-β1-induced gene expression changes in this model, focusing on genes for which targeted drugs are available. In addition to the upregulation of the TGF-β1 signalling pathway, we found that (i) genes in the EGF/EGFR pathway, including those coding for EGFR and several EGFR ligands, were also induced, and (ii) Erlotinib and Osimertinib, two therapeutic EGFR/tyrosine kinase inhibitors, decreased the TGF-β1-induced adherence and invasion of the CTC cluster-like line despite the line expressing wild-type EGFR. Overall, we suggest that EGFR inhibitors have the potential to decrease the dispersal of CTC clusters that respond to TGF-β1 and overexpress EGFR (irrespective of its status) and thus could improve patient survival.
Collapse
Affiliation(s)
- Jorian D Hapeman
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Rakshit Galwa
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Caroline S Carneiro
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
13
|
Mahasa KJ, Ouifki R, de Pillis L, Eladdadi A. A Role of Effector CD 8 + T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model. Bull Math Biol 2024; 86:89. [PMID: 38884815 DOI: 10.1007/s11538-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD 8 + T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined. Recent studies highlighted the supporting role of activated platelets in CTCs's extravasation from the bloodstream, contributing to metastatic progression. In this work, a simple mathematical model describes how the primary tumor, CTCs, activated platelets and effector CD 8 + T cells participate in metastasis. The stability analysis reveals that for early dissemination of CTCs, effector CD 8 + T cells can present or keep secondary metastatic tumor burden at low equilibrium state. In contrast, for late dissemination of CTCs, effector CD 8 + T cells are unlikely to inhibit secondary tumor growth. Moreover, global sensitivity analysis demonstrates that the rate of the primary tumor growth, intravascular CTC proliferation, as well as the CD 8 + T cell proliferation, strongly affects the number of the secondary tumor cells. Additionally, model simulations indicate that an increase in CTC proliferation greatly contributes to tumor metastasis. Our simulations further illustrate that the higher the number of activated platelets on CTCs, the higher the probability of secondary tumor establishment. Intriguingly, from a mathematical immunology perspective, our simulations indicate that if the rate of effector CD 8 + T cell proliferation is high, then the secondary tumor formation can be considerably delayed, providing a window for adjuvant tumor control strategies. Collectively, our results suggest that the earlier the effector CD 8 + T cell response is enhanced the higher is the probability of preventing or delaying secondary tumor metastases.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | | | - Amina Eladdadi
- Division of Mathematical Sciences, The National Science Foundation, Alexandria, VA, USA
| |
Collapse
|
14
|
Budka J, Debowski D, Mai S, Narajczyk M, Hac S, Rolka K, Vrettos EI, Tzakos AG, Inkielewicz-Stepniak I. Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma. Pharmaceutics 2024; 16:283. [PMID: 38399336 PMCID: PMC10892429 DOI: 10.3390/pharmaceutics16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dawid Debowski
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Stanislaw Hac
- Department of General Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina, Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | | |
Collapse
|
15
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Hapeman JD, Carneiro CS, Nedelcu AM. A model for the dissemination of circulating tumour cell clusters involving platelet recruitment and a plastic switch between cooperative and individual behaviours. BMC Ecol Evol 2023; 23:39. [PMID: 37605189 PMCID: PMC10440896 DOI: 10.1186/s12862-023-02147-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND In spite of extensive research, cancer remains a major health problem worldwide. As cancer progresses, cells acquire traits that allow them to disperse and disseminate to distant locations in the body - a process known as metastasis. While in the vasculature, these cells are referred to as circulating tumour cells (CTCs) and can manifest either as single cells or clusters of cells (i.e., CTC clusters), with the latter being the most aggressive. The increased metastatic potential of CTC clusters is generally associated with cooperative group benefits in terms of survival, including increased resistance to shear stress, anoikis, immune attacks and drugs. However, the adoption of a group phenotype poses a challenge when exiting the vasculature (extravasation) as the large size can hinder the passage through vessel walls. Despite their significant role in the metastatic process, the mechanisms through which CTC clusters extravasate remain largely unknown. Based on the observed in vivo association between CTC clusters and platelets, we hypothesized that cancer cells take advantage of the platelet-derived Transforming Growth Factor Beta 1 (TGF-β1) - a signalling factor that has been widely implicated in many aspects of cancer, to facilitate their own dissemination. To address this possibility, we evaluated the effect of exogenous TGF-β1 on an experimentally evolved non-small cell lung cancer cell line that we previously developed and used to investigate the biology of CTC clusters. RESULTS We found that exogenous TGF-β1 induced the dissociation of clusters in suspension into adherent single cells. Once adhered, cells released their own TGF-β1 and were able to individually migrate and invade in the absence of exogenous TGF-β1. Based on these findings we developed a model that involves a TGF-β1-mediated plastic switch between a cooperative phenotype and a single-celled stage that enables the extravasation of CTC clusters. CONCLUSIONS This model allows for the possibility that therapies can be developed against TGF-β1 signalling components and/or TGF-β1 target genes to suppress the metastatic potential of CTC clusters. Considering the negative impact that metastasis has on cancer prognosis and the lack of therapies against this process, interfering with the ability of CTC clusters to switch between cooperative and individual behaviours could provide new strategies to improve patient survival.
Collapse
Affiliation(s)
- Jorian D Hapeman
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Caroline S Carneiro
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
17
|
Di Sario G, Rossella V, Famulari ES, Maurizio A, Lazarevic D, Giannese F, Felici C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front Genet 2023; 14:1152470. [PMID: 37077538 PMCID: PMC10109350 DOI: 10.3389/fgene.2023.1152470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In the last years, liquid biopsy gained increasing clinical relevance for detecting and monitoring several cancer types, being minimally invasive, highly informative and replicable over time. This revolutionary approach can be complementary and may, in the future, replace tissue biopsy, which is still considered the gold standard for cancer diagnosis. "Classical" tissue biopsy is invasive, often cannot provide sufficient bioptic material for advanced screening, and can provide isolated information about disease evolution and heterogeneity. Recent literature highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic, and metabolic alterations. These biomarkers can be detected and investigated using single-omic and, recently, in combination through multi-omic approaches. This review will provide an overview of the most suitable techniques to thoroughly characterize tumor biomarkers and their potential clinical applications, highlighting the importance of an integrated multi-omic, multi-analyte approach. Personalized medical investigations will soon allow patients to receive predictable prognostic evaluations, early disease diagnosis, and subsequent ad hoc treatments.
Collapse
|
18
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
19
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
20
|
Deng M, Aberle MR, van Bijnen AAJHM, van der Kroft G, Lenaerts K, Neumann UP, Wiltberger G, Schaap FG, Olde Damink SWM, Rensen SS. Lipocalin-2 and neutrophil activation in pancreatic cancer cachexia. Front Immunol 2023; 14:1159411. [PMID: 37006254 PMCID: PMC10057111 DOI: 10.3389/fimmu.2023.1159411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundCancer cachexia is a multifactorial syndrome characterized by body weight loss and systemic inflammation. The characterization of the inflammatory response in patients with cachexia is still limited. Lipocalin-2, a protein abundant in neutrophils, has recently been implicated in appetite suppression in preclinical models of pancreatic cancer cachexia. We hypothesized that lipocalin-2 levels could be associated with neutrophil activation and nutritional status of pancreatic ductal adenocarcinoma (PDAC) patients.MethodsPlasma levels of neutrophil activation markers calprotectin, myeloperoxidase, elastase, and bactericidal/permeability-increasing protein (BPI) were compared between non-cachectic PDAC patients (n=13) and cachectic PDAC patients with high (≥26.9 ng/mL, n=34) or low (<26.9 ng/mL, n=34) circulating lipocalin-2 levels. Patients’ nutritional status was assessed by the patient-generated subjective global assessment (PG-SGA) and through body composition analysis using CT-scan slices at the L3 level.ResultsCirculating lipocalin-2 levels did not differ between cachectic and non-cachectic PDAC patients (median 26.7 (IQR 19.7-34.8) vs. 24.8 (16.6-29.4) ng/mL, p=0.141). Cachectic patients with high systemic lipocalin-2 levels had higher concentrations of calprotectin, myeloperoxidase, and elastase than non-cachectic patients or cachectic patients with low lipocalin-2 levels (calprotectin: 542.3 (355.8-724.9) vs. 457.5 (213.3-606.9), p=0.448 vs. 366.5 (294.5-478.5) ng/mL, p=0.009; myeloperoxidase: 30.3 (22.1-37.9) vs. 16.3 (12.0-27.5), p=0.021 vs. 20.2 (15.0-29.2) ng/mL, p=0.011; elastase: 137.1 (90.8-253.2) vs. 97.2 (28.8-215.7), p=0.410 vs. 95.0 (72.2-113.6) ng/mL, p=0.006; respectively). The CRP/albumin ratio was also higher in cachectic patients with high lipocalin-2 levels (2.3 (1.3-6.0) as compared to non-cachectic patients (1.0 (0.7-4.2), p=0.041). Lipocalin-2 concentrations correlated with those of calprotectin (rs=0.36, p<0.001), myeloperoxidase (rs=0.48, p<0.001), elastase (rs=0.50, p<0.001), and BPI (rs=0.22, p=0.048). Whereas no significant correlations with weight loss, BMI, or L3 skeletal muscle index were observed, lipocalin-2 concentrations were associated with subcutaneous adipose tissue index (rs=-0.25, p=0.034). Moreover, lipocalin-2 tended to be elevated in severely malnourished patients compared with well-nourished patients (27.2 (20.3-37.2) vs. 19.9 (13.4-26.4) ng/mL, p=0.058).ConclusionsThese data suggest that lipocalin-2 levels are associated with neutrophil activation in patients with pancreatic cancer cachexia and that it may contribute to their poor nutritional status.
Collapse
Affiliation(s)
- Min Deng
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Merel R. Aberle
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Annemarie A. J. H. M. van Bijnen
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Gregory van der Kroft
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Kaatje Lenaerts
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Ulf P. Neumann
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Steven W. M. Olde Damink
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- *Correspondence: Sander S. Rensen,
| |
Collapse
|
21
|
Couto-Cunha A, Jerónimo C, Henrique R. Circulating Tumor Cells as Biomarkers for Renal Cell Carcinoma: Ready for Prime Time? Cancers (Basel) 2022; 15:cancers15010287. [PMID: 36612281 PMCID: PMC9818240 DOI: 10.3390/cancers15010287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is among the 15 most common cancers worldwide, with rising incidence. In most cases, this is a silent disease until it reaches advance stages, demanding new effective biomarkers in all domains, from detection to post-therapy monitoring. Circulating tumor cells (CTC) have the potential to provide minimally invasive information to guide assessment of the disease's aggressiveness and therapeutic strategy, representing a special pool of neoplastic cells which bear metastatic potential. In some tumor models, CTCs' enumeration has been associated with prognosis, but there is a largely unexplored potential for clinical applicability encompassing screening, diagnosis, early detection of metastases, prognosis, response to therapy and monitoring. Nonetheless, lack of standardization and high cost hinder the translation into clinical practice. Thus, new methods for collection and analysis (genomic, proteomic, transcriptomic, epigenomic and metabolomic) are needed to ascertain the role of CTC as a RCC biomarker. Herein, we provide a critical overview of the most recently published data on the role and clinical potential of CTCs in RCC, addressing their biology and the molecular characterization of this remarkable set of tumor cells. Furthermore, we highlight the existing and emerging techniques for CTC enrichment and detection, exploring clinical applications in RCC. Notwithstanding the notable progress in recent years, the use of CTCs in a routine clinical scenario of RCC patients requires further research and technological development, enabling multimodal analysis to take advantage of the wealth of information they provide.
Collapse
Affiliation(s)
- Anabela Couto-Cunha
- Integrated Master in Medicine, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: or
| |
Collapse
|
22
|
Lee JH, Massagué J. TGF-β in Developmental and Fibrogenic EMTs. Semin Cancer Biol 2022; 86:136-145. [PMID: 36183999 PMCID: PMC10155902 DOI: 10.1016/j.semcancer.2022.09.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
TGF-β plays a prominent role as an inducer of epithelial-mesenchymal transitions (EMTs) during development and wound healing and in disease conditions such as fibrosis and cancer. During these processes EMT occurs together with changes in cell proliferation, differentiation, communication, and extracellular matrix remodeling that are orchestrated by multiple signaling inputs besides TGF-β. Chief among these inputs is RAS-MAPK signaling, which is frequently required for EMT induction by TGF-β. Recent work elucidated the molecular basis for the cooperation between the TGF-β-SMAD and RAS-MAPK pathways in the induction of EMT in embryonic, adult and carcinoma epithelial cells. These studies also provided direct mechanistic links between EMT and progenitor cell differentiation during gastrulation or intra-tumoral fibrosis during cancer metastasis. These insights illuminate the nature of TGF-β driven EMTs as part of broader processes during development, fibrogenesis and metastasis.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Buszka K, Ntzifa A, Owecka B, Kamińska P, Kolecka-Bednarczyk A, Zabel M, Nowicki M, Lianidou E, Budna-Tukan J. Liquid Biopsy Analysis as a Tool for TKI-Based Treatment in Non-Small Cell Lung Cancer. Cells 2022; 11:2871. [PMID: 36139444 PMCID: PMC9497234 DOI: 10.3390/cells11182871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in this article show that detection and analysis based on liquid biopsy elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as complementary to invasive tissue biopsy. The detection of these elements, combined with their molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the TKI treatment. Despite such promising results obtained by many research teams, it is still necessary to carry out prospective studies on a larger group of patients in order to validate these methods before their application in clinical practice.
Collapse
Affiliation(s)
- Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Barbara Owecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agata Kolecka-Bednarczyk
- Department of Immunology, Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
24
|
Chen Q, Zou J, He Y, Pan Y, Yang G, Zhao H, Huang Y, Zhao Y, Wang A, Chen W, Lu Y. A narrative review of circulating tumor cells clusters: A key morphology of cancer cells in circulation promote hematogenous metastasis. Front Oncol 2022; 12:944487. [PMID: 36059616 PMCID: PMC9434215 DOI: 10.3389/fonc.2022.944487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Circulating tumor cells (CTCs) that survive in the blood are playing an important role in the metastasis process of tumor. In addition, they have become a tool for tumor diagnosis, prognosis and recurrence monitoring. CTCs can exist in the blood as individual cells or as clumps of aggregated cells. In recent years, more and more studies have shown that clustered CTCs have stronger metastasis ability compared to single CTCs. With the deepening of studies, scholars have found that cancer cells can combine not only with each other, but also with non-tumor cells present in the blood, such as neutrophils, platelets, etc. At the same time, it was confirmed that non-tumor cells bound to CTCs maintain the survival and proliferation of cancer cells through a variety of ways, thus promoting the occurrence and development of tumor. In this review, we collected information on tumorigenesis induced by CTC clusters to make a summary and a discussion about them. Although CTC clusters have recently been considered as a key role in the transition process, many characteristics of them remain to be deeply explored. A detailed understanding of their vulnerability can prospectively pave the way for new inhibitors for metastasis.
Collapse
Affiliation(s)
- Qiong Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jueyao Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong He
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gejun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
25
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
26
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Exploring the Clinical Utility of Pancreatic Cancer Circulating Tumor Cells. Int J Mol Sci 2022; 23:ijms23031671. [PMID: 35163592 PMCID: PMC8836025 DOI: 10.3390/ijms23031671] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type, characterized by a dismal prognosis due to late diagnosis, frequent metastases, and limited therapeutic response to standard chemotherapy. Circulating tumor cells (CTCs) are a rare subset of tumor cells found in the blood of cancer patients. CTCs has the potential utility for screening, early and definitive diagnosis, prognostic and predictive assessment, and offers the potential for personalized management. However, a gold-standard CTC detection and enrichment method remains elusive, hindering comprehensive comparisons between studies. In this review, we summarize data regarding the utility of CTCs at different stages of PDAC from early to metastatic disease and discuss the molecular profiling and culture of CTCs. The characterization of CTCs brings us closer to defining the specific CTC subpopulation responsible for metastasis with the potential to uncover new therapies and more effective management options for PDAC.
Collapse
|
28
|
Stemness, Inflammation and Epithelial-Mesenchymal Transition in Colorectal Carcinoma: The Intricate Network. Int J Mol Sci 2021; 22:ijms222312891. [PMID: 34884696 PMCID: PMC8658015 DOI: 10.3390/ijms222312891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
In global cancer statistics, colorectal carcinoma (CRC) ranks third by incidence and second by mortality, causing 10.0% of new cancer cases and 9.4% of oncological deaths worldwide. Despite the development of screening programs and preventive measures, there are still high numbers of advanced cases. Multiple problems compromise the treatment of metastatic colorectal cancer, one of these being cancer stem cells—a minor fraction of pluripotent, self-renewing malignant cells capable of maintaining steady, low proliferation and exhibiting an intriguing arsenal of treatment resistance mechanisms. Currently, there is an increasing body of evidence for intricate associations between inflammation, epithelial–mesenchymal transition and cancer stem cells. In this review, we focus on inflammation and its role in CRC stemness development through epithelial–mesenchymal transition.
Collapse
|