1
|
Dompé C, Chojnowska A, Ramlau R, Nowicki M, Alix-Panabières C, Budna-Tukan J. Unveiling the dynamics of circulating tumor cells in colorectal cancer: from biology to clinical applications. Front Cell Dev Biol 2024; 12:1498032. [PMID: 39539964 PMCID: PMC11557528 DOI: 10.3389/fcell.2024.1498032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This review delves into the pivotal role of circulating tumor cells (CTCs) in colorectal cancer (CRC) metastasis, focusing on their biological properties, interactions with the immune system, advanced detection techniques, and clinical implications. We explored how metastasis-competent CTCs evade immune surveillance and proliferate, utilizing cutting-edge detection and isolation technologies, such as microfluidic devices and immunological assays, to enhance sensitivity and specificity. The review highlights the significant impact of CTC interactions with immune cells on tumor progression and patient outcomes. It discusses the application of these findings in clinical settings, including non-invasive liquid biopsies for early diagnosis, prognosis, and treatment monitoring. Despite advancements, challenges remain, such as the need for standardized methods to consistently capture and analyze CTCs. Addressing these challenges through further molecular and cellular research on CTCs could lead to improved interventions and outcomes for CRC patients, underscoring the importance of unraveling the complex dynamics of CTCs in cancer progression.
Collapse
Affiliation(s)
- Claudia Dompé
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- Centre de Recherche en Ecologie et Evolution du Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Dévelopement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
2
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
3
|
Pastuszak K, Sieczczyński M, Dzięgielewska M, Wolniak R, Drewnowska A, Korpal M, Zembrzuska L, Supernat A, Żaczek AJ. Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing. Sci Rep 2024; 14:11057. [PMID: 38744942 PMCID: PMC11094170 DOI: 10.1038/s41598-024-61378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically comprises thousands of gene expression reads per cell, which artificial intelligence algorithms can accurately analyze. This work presents machine-learning-based classifiers that differentiate CTCs from peripheral blood mononuclear cells (PBMCs) based on single cell RNA sequencing data. We developed four tree-based models and we trained and tested them on a dataset consisting of Smart-Seq2 sequenced data from primary tumor sections of breast cancer patients and PBMCs and on a public dataset with manually annotated CTC expression profiles from 34 metastatic breast patients, including triple-negative breast cancer. Our best models achieved about 95% balanced accuracy on the CTC test set on per cell basis, correctly detecting 133 out of 138 CTCs and CTC-PBMC clusters. Considering the non-invasive character of the liquid biopsy examination and our accurate results, we can conclude that our work has potential application value.
Collapse
Affiliation(s)
- Krzysztof Pastuszak
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.
- Centre of Biostatistics and Bioinformatics, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.
| | - Michał Sieczczyński
- Centre of Biostatistics and Bioinformatics, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Marta Dzięgielewska
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Rafał Wolniak
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Agata Drewnowska
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Marcel Korpal
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Laura Zembrzuska
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
- Centre of Biostatistics and Bioinformatics, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.
| |
Collapse
|
4
|
Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating Tumor Cells: How Far Have We Come with Mining These Seeds of Metastasis? Cancers (Basel) 2024; 16:816. [PMID: 38398206 PMCID: PMC10887304 DOI: 10.3390/cancers16040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that slough off from the tumor and circulate in the peripheral blood and lymphatic system as micro metastases that eventually results in macro metastases. Through a simple blood draw, sensitive CTC detection from clinical samples has proven to be a useful tool for determining the prognosis of cancer. Recent technological developments now make it possible to detect CTCs reliably and repeatedly from a simple and straightforward blood test. Multicenter trials to assess the clinical value of CTCs have demonstrated the prognostic value of these cancer cells. Studies on CTCs have filled huge knowledge gap in understanding the process of metastasis since their identification in the late 19th century. However, these rare cancer cells have not been regularly used to tailor precision medicine and or identify novel druggable targets. In this review, we have attempted to summarize the milestones of CTC-based research from the time of identification to molecular characterization. Additionally, the need for a paradigm shift in dissecting these seeds of metastasis and the possible future avenues to improve CTC-based discoveries are also discussed.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
5
|
Sinha S, Farfel A, Luker KE, Parker BA, Yeung KT, Luker GD, Ghosh P. Growth signaling autonomy in circulating tumor cells aids metastatic seeding. PNAS NEXUS 2024; 3:pgae014. [PMID: 38312224 PMCID: PMC10833458 DOI: 10.1093/pnasnexus/pgae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Self-sufficiency (autonomy) in growth signaling, the earliest recognized hallmark of cancer, is fueled by the tumor cell's ability to "secrete-and-sense" growth factors (GFs); this translates into cell survival and proliferation that is self-sustained by autocrine/paracrine secretion. A Golgi-localized circuitry comprised of two GTPase switches has recently been implicated in the orchestration of growth signaling autonomy. Using breast cancer cells that are either endowed or impaired (by gene editing) in their ability to assemble the circuitry for growth signaling autonomy, here we define the transcriptome, proteome, and phenome of such an autonomous state, and unravel its role during cancer progression. We show that autonomy is associated with enhanced molecular programs for stemness, proliferation, and epithelial-mesenchymal plasticity. Autonomy is both necessary and sufficient for anchorage-independent GF-restricted proliferation and resistance to anticancer drugs and is required for metastatic progression. Transcriptomic and proteomic studies show that autonomy is associated, with a surprising degree of specificity, with self-sustained epidermal growth factor receptor (EGFR)/ErbB signaling. Derivation of a gene expression signature for autonomy revealed that growth signaling autonomy is uniquely induced in circulating tumor cells (CTCs), the harshest phase in the life of tumor cells when it is deprived of biologically available epidermal growth factor (EGF). We also show that autonomy in CTCs tracks therapeutic response and prognosticates outcome. These data support a role for growth signaling autonomy in multiple processes essential for the blood-borne dissemination of human breast cancer.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Farfel
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kathryn E Luker
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Barbara A Parker
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kay T Yeung
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
6
|
Shbeer AM, Robadi IA. liquid biopsy holds a promising approach for the early detection of cancer: Current information and future perspectives. Pathol Res Pract 2024; 254:155082. [PMID: 38246032 DOI: 10.1016/j.prp.2023.155082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Cancer is becoming a global pandemic, and its occurrence is increasing rapidly, putting a strain on people's families, health systems, and finances, in addition to their physical, mental, and emotional well-being. Many cancer types lack screening programs, and many people at high risk of developing cancer do not follow recommended medical screening regimens because of the nature of currently available screening tests and other compliance issues, despite cancer being the second leading cause of death worldwide. Furthermore, a lot of liquid biopsy methods for early cancer screening are not sensitive enough to catch cancer early. Cancer treatment costs increase with the time it takes to diagnose the disease; therefore, early detection is essential to enhance the quality of life and survival rates. The current status of the liquid biopsy sector is examined in this paper.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
7
|
Fontana R, Mestre-Farrera A, Yang J. Update on Epithelial-Mesenchymal Plasticity in Cancer Progression. ANNUAL REVIEW OF PATHOLOGY 2024; 19:133-156. [PMID: 37758242 PMCID: PMC10872224 DOI: 10.1146/annurev-pathmechdis-051222-122423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells lose their characteristics and acquire mesenchymal traits to promote cell movement. This program is aberrantly activated in human cancers and endows tumor cells with increased abilities in tumor initiation, cell migration, invasion, metastasis, and therapy resistance. The EMT program in tumors is rarely binary and often leads to a series of gradual or intermediate epithelial-mesenchymal states. Functionally, epithelial-mesenchymal plasticity (EMP) improves the fitness of cancer cells during tumor progression and in response to therapies. Here, we discuss the most recent advances in our understanding of the diverse roles of EMP in tumor initiation, progression, metastasis, and therapy resistance and address major clinical challenges due to EMP-driven phenotypic heterogeneity in cancer. Uncovering novel molecular markers and key regulators of EMP in cancer will aid the development of new therapeutic strategies to prevent cancer recurrence and overcome therapy resistance.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
| | - Aida Mestre-Farrera
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
8
|
Bhatia S, Gunter JH, Burgess JT, Adams MN, O'Byrne K, Thompson EW, Duijf PH. Stochastic epithelial-mesenchymal transitions diversify non-cancerous lung cell behaviours. Transl Oncol 2023; 37:101760. [PMID: 37611490 PMCID: PMC10466920 DOI: 10.1016/j.tranon.2023.101760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) is a hallmark of cancer. By enabling cells to shift between different morphological and functional states, EMP promotes invasion, metastasis and therapy resistance. We report that near-diploid non-cancerous human epithelial lung cells spontaneously shift along the EMP spectrum without genetic changes. Strikingly, more than half of single cell-derived clones adopt a mesenchymal morphology. We independently characterise epithelial-like and mesenchymal-like clones. Mesenchymal clones lose epithelial markers, display larger cell aspect ratios and lower motility, with mostly unaltered proliferation rates. Stemness marker expression and metabolic rewiring diverge independently of phenotypes. In 3D culture, more epithelial clones become mesenchymal-like. Thus, non-cancerous epithelial cells may acquire cancer metastasis-associated features prior to genetic alterations and cancerous transformation.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| | - Jennifer H Gunter
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Queensland University of Technology, Woolloongabba 4102, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Kenneth O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Princess Alexandra Hospital, Woolloongabba 4102, QLD, Australia
| | - Erik W Thompson
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Pascal Hg Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide SA, 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
9
|
Eslami-S Z, Cortés-Hernández LE, Glogovitis I, Antunes-Ferreira M, D’Ambrosi S, Kurma K, Garima F, Cayrefourcq L, Best MG, Koppers-Lalic D, Wurdinger T, Alix-Panabières C. In vitro cross-talk between metastasis-competent circulating tumor cells and platelets in colon cancer: a malicious association during the harsh journey in the blood. Front Cell Dev Biol 2023; 11:1209846. [PMID: 37601099 PMCID: PMC10433913 DOI: 10.3389/fcell.2023.1209846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background: Platelets are active players in hemostasis, coagulation and also tumorigenesis. The cross-talk between platelets and circulating tumor cells (CTCs) may have various pro-cancer effects, including promoting tumor growth, epithelial-mesenchymal transition (EMT), metastatic cell survival, adhesion, arrest and also pre-metastatic niche and metastasis formation. Interaction with CTCs might alter the platelet transcriptome. However, as CTCs are rare events, the cross-talk between CTCs and platelets is poorly understood. Here, we used our established colon CTC lines to investigate the colon CTC-platelet cross-talk in vitro and its impact on the behavior/phenotype of both cell types. Methods: We exposed platelets isolated from healthy donors to thrombin (positive control) or to conditioned medium from three CTC lines from one patient with colon cancer and then we monitored the morphological and protein expression changes by microscopy and flow cytometry. We then analyzed the transcriptome by RNA-sequencing of platelets indirectly (presence of a Transwell insert) co-cultured with the three CTC lines. We also quantified by reverse transcription-quantitative PCR the expression of genes related to EMT and cancer development in CTCs after direct co-culture (no Transwell insert) with platelets. Results: We observed morphological and transcriptomic changes in platelets upon exposure to CTC conditioned medium and indirect co-culture (secretome). Moreover, the expression levels of genes involved in EMT (p < 0.05) were decreased in CTCs co-cultured with platelets, but not of genes encoding mesenchymal markers (FN1 and SNAI2). The expression levels of genes involved in cancer invasiveness (MYC, VEGFB, IL33, PTGS2, and PTGER2) were increased. Conclusion: For the first time, we studied the CTC-platelet cross-talk using our unique colon CTC lines. Incubation with CTC conditioned medium led to platelet aggregation and activation, supporting the hypothesis that their interaction may contribute to preserve CTC integrity during their journey in the bloodstream. Moreover, co-culture with platelets influenced the expression of several genes involved in invasiveness and EMT maintenance in CTCs.
Collapse
Affiliation(s)
- Zahra Eslami-S
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Ilias Glogovitis
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mafalda Antunes-Ferreira
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Silvia D’Ambrosi
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Keerthi Kurma
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Françoise Garima
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Myron G. Best
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Thomas Wurdinger
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells—University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
10
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
11
|
Selvaggi F, Catalano T, Lattanzio R, Cotellese R, Aceto GM. Wingless/It/β-catenin signaling in liver metastasis from colorectal cancer: A focus on biological mechanisms and therapeutic opportunities. World J Gastroenterol 2023; 29:2764-2783. [PMID: 37274070 PMCID: PMC10237106 DOI: 10.3748/wjg.v29.i18.2764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
The liver is the most common site of metastases in patients with colorectal cancer. Colorectal liver metastases (CRLMs) are the result of molecular mechanisms that involve different cells of the liver microenvironment. The aberrant activation of Wingless/It (Wnt)/β-catenin signals downstream of Wnt ligands initially drives the oncogenic transformation of the colon epithelium, but also the progression of metastatization through the epithelial-mesenchymal transition/mesenchymal-epithelial transition interactions. In liver microenvironment, metastatic cells can also survive and adapt through dormancy, which makes them less susceptible to pro-apoptotic signals and therapies. Treatment of CRLMs is challenging due to its variability and heterogeneity. Advances in surgery and oncology have been made in the last decade and a pivotal role for Wnt/β-catenin pathway has been re-cognized in chemoresistance. At the state of art, there is a lack of clear understanding of why and how this occurs and thus where exactly the opportunities for developing anti-CRLMs therapies may lie. In this review, current knowledge on the involvement of Wnt signaling in the development of CRLMs was considered. In addition, an overview of useful biomarkers with a revision of surgical and non-surgical therapies currently accepted in the clinical practice for colorectal liver metastasis patients were provided.
Collapse
Affiliation(s)
- Federico Selvaggi
- Department of Surgical, ASL2 Lanciano-Vasto-Chieti, Ospedale Clinicizzato SS Annunziata of Chieti, Chieti 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti 66100, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti 66100, Italy
- Villa Serena Foundation for Research, Villa Serena - Del Dott. L. Petruzzi, Città Sant’Angelo 65013, Pescara, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
12
|
Subbalakshmi AR, Sahoo S, Manjunatha P, Goyal S, Kasiviswanathan VA, Mahesh Y, Ramu S, McMullen I, Somarelli JA, Jolly MK. The ELF3 transcription factor is associated with an epithelial phenotype and represses epithelial-mesenchymal transition. J Biol Eng 2023; 17:17. [PMID: 36864480 PMCID: PMC9983220 DOI: 10.1186/s13036-023-00333-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial, mesenchymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the process of epithelial-mesenchymal transition (EMT) and its associated transcription factors are well-characterised, the transcription factors that promote mesenchymal-epithelial transition (MET) and stabilise hybrid E/M phenotypes are less well understood. RESULTS Here, we analyse multiple publicly-available transcriptomic datasets at bulk and single-cell level and pinpoint ELF3 as a factor that is strongly associated with an epithelial phenotype and is inhibited during EMT. Using mechanism-based mathematical modelling, we also show that ELF3 inhibits the progression of EMT. This behaviour was also observed in the presence of an EMT inducing factor WT1. Our model predicts that the MET induction capacity of ELF3 is stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels correlates with worse patient survival in a subset of solid tumour types. CONCLUSION ELF3 is shown to be inhibited during EMT progression and is also found to inhibit the progression of complete EMT suggesting that ELF3 may be able to counteract EMT induction, including in the presence of EMT-inducing factors, such as WT1. The analysis of patient survival data indicates that the prognostic capacity of ELF3 is specific to cell-of-origin or lineage.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Sarthak Sahoo
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Prakruthi Manjunatha
- grid.444321.40000 0004 0501 2828Department of Medical Electronics, M S Ramaiah Institute of Technology, 560054 Bangalore, India
| | - Shaurya Goyal
- grid.429017.90000 0001 0153 2859Department of Humanities and Social Sciences, Indian Institute of Technology, 721302 Kharagpur, India
| | - Vignesh A Kasiviswanathan
- grid.512757.30000 0004 1761 9897Department of Biotechnology, JSS Science and Technology University, 570006 Mysore, India
| | - Yeshwanth Mahesh
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Soundharya Ramu
- grid.419655.a0000 0001 0008 3668Department of Biotechnology, National Institute of Technology Warangal, 506004 Warangal, India
| | - Isabelle McMullen
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA
| | - Jason A. Somarelli
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA ,grid.26009.3d0000 0004 1936 7961Duke Cancer Institute, Duke University, NC 27708 Durham, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012, Bangalore, India.
| |
Collapse
|
13
|
Couto-Cunha A, Jerónimo C, Henrique R. Circulating Tumor Cells as Biomarkers for Renal Cell Carcinoma: Ready for Prime Time? Cancers (Basel) 2022; 15:cancers15010287. [PMID: 36612281 PMCID: PMC9818240 DOI: 10.3390/cancers15010287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is among the 15 most common cancers worldwide, with rising incidence. In most cases, this is a silent disease until it reaches advance stages, demanding new effective biomarkers in all domains, from detection to post-therapy monitoring. Circulating tumor cells (CTC) have the potential to provide minimally invasive information to guide assessment of the disease's aggressiveness and therapeutic strategy, representing a special pool of neoplastic cells which bear metastatic potential. In some tumor models, CTCs' enumeration has been associated with prognosis, but there is a largely unexplored potential for clinical applicability encompassing screening, diagnosis, early detection of metastases, prognosis, response to therapy and monitoring. Nonetheless, lack of standardization and high cost hinder the translation into clinical practice. Thus, new methods for collection and analysis (genomic, proteomic, transcriptomic, epigenomic and metabolomic) are needed to ascertain the role of CTC as a RCC biomarker. Herein, we provide a critical overview of the most recently published data on the role and clinical potential of CTCs in RCC, addressing their biology and the molecular characterization of this remarkable set of tumor cells. Furthermore, we highlight the existing and emerging techniques for CTC enrichment and detection, exploring clinical applications in RCC. Notwithstanding the notable progress in recent years, the use of CTCs in a routine clinical scenario of RCC patients requires further research and technological development, enabling multimodal analysis to take advantage of the wealth of information they provide.
Collapse
Affiliation(s)
- Anabela Couto-Cunha
- Integrated Master in Medicine, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: or
| |
Collapse
|
14
|
Pantel K, Alix-Panabières C. Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: biology and clinical translation. J Immunother Cancer 2022; 10:jitc-2022-005615. [PMID: 36517082 PMCID: PMC9756199 DOI: 10.1136/jitc-2022-005615] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer-related deaths are mainly caused by metastatic spread of tumor cells from the primary lesion to distant sites via the blood circulation. Understanding the mechanisms of blood-borne tumor cell dissemination by the detection and molecular characterization of circulating tumor cells (CTCs) in the blood of patients with cancer has opened a new avenue in cancer research. Recent technical advances have enabled a comprehensive analysis of the CTCs at the genome, transcriptome and protein level as well as first functional studies using patient-derived CTC cell lines. In this review, we describe and discuss how research on CTCs has yielded important insights into the biology of cancer metastasis and the response of patients with cancer to therapies directed against metastatic cells. Future investigations will show whether CTCs leaving their primary site are more vulnerable to attacks by immune effector cells and whether cancer cell dissemination might be the 'Achilles heel' of metastatic progression. Here, we focus on the lessons learned from CTC research on the biology of cancer metastasis in patients with particular emphasis on the interactions of CTCs with the immune system. Moreover, we describe and discuss briefly the potential and challenges for implementing CTCs into clinical decision-making including detection of minimal residual disease, monitoring efficacies of systemic therapies and identification of therapeutic targets and resistance mechanisms.
Collapse
Affiliation(s)
- Klaus Pantel
- Institute of Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- European Liquid Biopsy Society (ELBS), Hamburg, Germany,Laboratory Detection of Rare Human Circulating Cells (LCCRH), University Hospital Centre Montpellier, Montpellier, France,CREEC, MIVEGEC, Montpellier, France
| |
Collapse
|
15
|
Trapp EK, Fasching PA, Fehm T, Schneeweiss A, Mueller V, Harbeck N, Lorenz R, Schumacher C, Heinrich G, Schochter F, de Gregorio A, Tzschaschel M, Rack B, Janni W, Friedl TWP. Does the Presence of Circulating Tumor Cells in High-Risk Early Breast Cancer Patients Predict the Site of First Metastasis-Results from the Adjuvant SUCCESS A Trial. Cancers (Basel) 2022; 14:3949. [PMID: 36010945 PMCID: PMC9406108 DOI: 10.3390/cancers14163949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
The prognostic relevance of circulating tumor cells (CTCs) in breast cancer is well established. However, little is known about the association of CTCs and site of first metastasis. In the SUCCESS A trial, 373 out of 3754 randomized high-risk breast cancer patients developed metastatic disease. CTC status was assessed by the FDA-approved CellSearch®-System (Menarini Silicon Biosystems, Bologna, Italy) in 206 of these patients before chemotherapy and additionally in 159 patients after chemotherapy. CTCs were detected in 70 (34.0%) of 206 patients before (median 2 CTCs, 1-827) and in 44 (27.7%) of 159 patients after chemotherapy (median 1 CTC, 1-124); 16 (10.1%) of 159 patients were CTC-positive at both timepoints. The site of first distant disease was bone-only, visceral-only, and other-site-only in 44 (21.4%), 60 (29.1%), and 74 (35.9%) patients, respectively, while 28 (13.6%) patients had multiple sites of first metastatic disease. Patients with CTCs at both timepoints more often showed bone-only first distant disease (37.5% vs. 21.0%) and first distant disease at multiple sites (31.3% vs. 12.6%) than patients without CTCs before and/or after chemotherapy (p = 0.027). In conclusion, the presence of CTCs before and after chemotherapy is associated with multiple-site or bone-only first-distant disease and may trigger intensified follow-up and perhaps further treatment.
Collapse
Affiliation(s)
- Elisabeth K. Trapp
- Department of Gynecology and Obstetrics, Medical University of Graz, 8036 Graz, Austria
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Volkmar Mueller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, LMU University Hospital, 81337 München, Germany
| | - Ralf Lorenz
- Gynecologic Practice Dr. Lorenz, N. Hecker, Dr. Kreiss-Sender, 38100 Braunschweig, Germany
| | - Claudia Schumacher
- Department of Gynecology and Obstetrics, St. Elisabeth’s Hospital, 50935 Cologne, Germany
| | | | - Fabienne Schochter
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Amelie de Gregorio
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Marie Tzschaschel
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas W. P. Friedl
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
16
|
Identification of epithelial and mesenchymal circulating tumor cells in clonal lineage of an aggressive prostate cancer case. NPJ Precis Oncol 2022; 6:41. [PMID: 35729213 PMCID: PMC9213535 DOI: 10.1038/s41698-022-00289-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
Little is known about the complexity and plasticity of circulating tumor cell (CTC) biology in different compartments of the fluid microenvironment during tumor metastasis. Here we integrated phenomics, genomics, and targeted proteomics to characterize CTC phenotypic and genotypic heterogeneity in paired peripheral blood (PB) and bone marrow aspirate (BMA) from a metastatic prostate cancer patient following the rapid disease progression, using the High-Definition Single Cell Assay 3.0 (HDSCA3.0). Uniquely, we identified a subgroup of genetically clonal CTCs that acquired a mesenchymal-like state and its presence was significantly associated with one subclone that emerged along the clonal lineage. Higher CTC abundance and phenotypic diversity were observed in the BMA than PB and differences in genomic alterations were also identified between the two compartments demonstrating spatial heterogeneity. Single cell copy number profiling further detected clonal heterogeneity within clusters of CTCs (also known as microemboli or aggregates) as well as phenotypic variations by targeted proteomics. Overall, these results identify epithelial and mesenchymal CTCs in the clonal lineage of an aggressive prostate cancer case and also demonstrate a single cell multi-omic approach to deconvolute the heterogeneity and association of CTC phenotype and genotype in multi-medium liquid biopsies of metastatic prostate cancer.
Collapse
|