1
|
Hassan AHE, Bae ES, Jeong Y, Ock CW, El-Sayed SM, Kim M, Radwan MF, Ibrahim TS, Cho JY, Park BY, Sim J, Lee SK, Lee YS. Design, synthesis and evaluation of acetylcholine-antitumor lipid hybrids led to identification of a potential anticancer agent disrupting the CDK4/6-Rb pathway in lung cancer. RSC Med Chem 2025:d4md01007h. [PMID: 40135145 PMCID: PMC11931566 DOI: 10.1039/d4md01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Hybridization of acetylcholine with antitumor lipids (ATLs) was explored to achieve novel potential anticancer agents. The combination with a 2-stearoxyphenyl moiety substantially enhanced the anticancer activity of the acetylcholine hybrids. Compounds 6, 8, 9 and 10 exhibited pronounced anticancer activities higher than edelfosine and stPEPC and NSC43067. Compounds 6, 8, 9 and 10 also showed broad-spectrum anticancer activity against diverse cancer cells including lung, ovarian, renal, prostate, leukaemia, colon, CNS, melanoma, and breast cancer cells. Compounds 6 and 8 were potent compounds eliciting single digit low micromolar GI50 values. Compound 6 was the most potent against non-small cell lung cancer, ovarian cancer, renal cancer, and prostate cancer. Meanwhile, compound 8 was the most potent against leukaemia, colon cancer, CNS cancer, melanoma, and breast cancer. Exploration of the mechanism of action of compound 6 in A549 non-small cell lung cancer cells showed that it triggers cell cycle arrest in the G0/G1 phase via disruption of the CDK4/6-Rb pathway and induces apoptosis via the activation of caspases, upregulation of BAX and cleavage of PARP. Overall, the results present acetylcholine-ATL hybrids 6 and 8 as potential anticancer agents for possible further development.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University Seoul 02447 Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Youngdo Jeong
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Chae Won Ock
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura National University Gamasa 7731168 Egypt
| | - Minji Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Mohamed F Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Jun-Young Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Boyoung Y Park
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University Seoul 02447 South Korea
| | - Jaehoon Sim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University Seoul 02447 Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Yong Sup Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| |
Collapse
|
2
|
Park SE, Chung KS, Heo SW, Kim SY, Lee JH, Hassan AHE, Lee YS, Lee JY, Lee KT. Therapeutic role of 2-stearoxyphenethyl phosphocholine targeting microtubule dynamics and Wnt/β-catenin/EMT signaling in human colorectal cancer cells. Life Sci 2023; 334:122227. [PMID: 37926298 DOI: 10.1016/j.lfs.2023.122227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The inhibition of cell death, perturbation of microtubule dynamics, and acceleration of Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling are fundamental processes in the progression and metastasis of colorectal cancer (CRC). To explore the role of 2-stearoxyphenethyl phosphocholine (stPEPC), an alkylphospholipid-based compound, in CRC, we conducted an MTT assay, cell cycle analysis, western blot analysis, immunoprecipitation, immunofluorescence staining, Annexin V/propidium iodide double staining, small interfering RNA gene silencing, a wound-healing assay, an invasion assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in the human CRC cell lines HT29 and HCT116. stPEPC showed anti-proliferative properties and mitotic cell accumulation via upregulated phosphorylation of BUBR1 and an association between mitotic arrest deficiency 2 (MAD2) and cell division cycle protein 20 homolog (CDC20). These results suggest that activation of the mitotic checkpoint complex and tubulin polymerization occurred, resulting in mitotic catastrophe in HT29 and HCT116 cells. In addition, stPEPC attenuated cell migration and invasion by regulating proteins mediated by EMT, such as E-cadherin and occludin. stPEPC altered the protein expression of Wnt3a and phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), glycogen synthase kinase 3β (GSK3β), and β-catenin as well as their target genes, including cMyc and cyclin D1, in CRC cells. Thus, stPEPC may be useful for developing new drugs to treat human CRC.
Collapse
Affiliation(s)
- Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ahmed H E Hassan
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Hassan AHE, Wang CY, Lee HJ, Jung SJ, Kim YJ, Cho SB, Lee CH, Ham G, Oh T, Lee SK, Lee YS. Scaffold hopping of N-benzyl-3,4,5-trimethoxyaniline: 5,6,7-Trimethoxyflavan derivatives as novel potential anticancer agents modulating hippo signaling pathway. Eur J Med Chem 2023; 256:115421. [PMID: 37163949 DOI: 10.1016/j.ejmech.2023.115421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Scaffold hopping of N-benzyl-3,4,5-trimethoxyaniline afforded 5,6,7-trimethoxyflavan derivatives that were efficiently synthesized in four linear steps. As lung cancer is the most lethal cancer, twenty-three synthesized compounds were evaluated against a panel of lung cancer cells. Amongst, compounds 8q and 8e showed interesting activity. Hence, compounds 8q and 8e were evaluated against panels of diverse cancers. Compounds 8q and 8e showed broad spectrum anticancer activity. However, compound 8q was more effective and, hence, was advanced for potency evaluation and characterization. Compound 8q showed comparable potencies to gefitinib, and oxaliplatin against lung and colorectal cancers, respectively, and superior potencies to temozolomide, dacarbazine, cisplatin, enzalutamide, methotrexate, imatinib against brain, skin, ovary, prostate, breast, and blood cancers, respectively. Compound 8q increased cleaved PARP, caspase 3, and 7 inducing apoptosis. In addition, it inhibited cyclins A, B1, H and cdc25c, and increased p53 triggering cell cycle arrest in G2/M phase. Moreover, it decreased YAP and increased LATS1 and p-mob1/mob1 activating hippo signaling. Furthermore, it decreased p-PI3K/PI3k, p-mTOR/mTOR and p-P70S6K/P70S6K inhibiting PI3k pathway. Together, these findings present compound 8q as a potential anticancer lead compound for further development of potential agents.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo Jong Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Su Jin Jung
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Gyeongpyo Ham
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Taegeun Oh
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Farag AK, Ahn BS, Yoo JS, Karam R, Roh EJ. Design, synthesis, and biological evaluation of pseudo-bicyclic pyrimidine-based compounds as potential EGFR inhibitors. Bioorg Chem 2022; 126:105918. [PMID: 35696765 DOI: 10.1016/j.bioorg.2022.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Cancer is one of the most dangerous diseases harvesting millions of lives every year globally, which mandates the development of new therapies. In this report, we designed and synthesized a novel series of compounds based on the structure of lapatinib and AF8c, a compound we developed and reported previously, to target EGFR kinase. The series was assayed against a panel of 60 cancer cell lines at the National Cancer Institute (NCI). Compounds 4a, 4f, 4 g, and 4 l showed high efficacy against melanoma, colon, and blood cancers, with 4a being the most effective. The evaluation of the potency of 4a against the 60 cell lines in a five-dose assay revealed a significant potency compared to lapatinib against melanoma, colon, and blood cancers. In vitro enzyme assay over 30 kinases showed significant potency against EGFR and high selectivity to EGFR among the tested kinases. A molecular modeling study of 4a and lapatinib inside the pockets of EGFR revealed that both compounds bind strongly inside the ATP-binding pocket of the EGFR kinase domain. Therefore, we present 4a as a novel EGFR kinase inhibitor with potent in vitro cellular activity against diverse types of cancer cells.
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Manufacturing department, Curachem Inc, Chungcheongbuk-do 28161, Republic of Korea.
| | - Byung Sun Ahn
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Je Sik Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Reham Karam
- Virology department, Faculty of veterinary medicine, Mansoura University, Dakahlia, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
5
|
Ki YS, Chung KS, Lee HW, Choi JH, Tapondjou LA, Jang E, Lee KT. Pennogenin-3-O-α-L-Rhamnopyranosyl-(1→2)-[α-L-Rhamnopyranosyl-(1→3)]-β-D-Glucopyranoside (Spiroconazol A) Isolated from Dioscorea bulbifera L. var. sativa Induces Autophagic Cell Death by p38 MAPK Activation in NSCLC Cells. Pharmaceuticals (Basel) 2022; 15:ph15070893. [PMID: 35890190 PMCID: PMC9319756 DOI: 10.3390/ph15070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
In our previous study, we reported the isolation of pennogenin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside (spiroconazol A), a steroidal saponin, from the flowers of Dioscorea bulbifera L. var. sativa. In the present study, we aimed to investigate the effects of spiroconazol A on autophagy and its underlying mechanisms in A549 and NCI-H358 human non-small cell lung cancer (NSCLC) cells. Spiroconazol A inhibited the proliferation of NSCLC cells in a concentration- and time-dependent manner. To determine the type of programmed cell death induced by spiroconazol A, we performed a characterization of apoptosis in spiroconazol A-treated A549 cells. Our results showed that spiroconazol A significantly suppressed A549 cell viability but did not influence cell apoptosis because phosphatidylserine and caspase activation were not detected. Furthermore, spiroconazol A treatment upregulated the expression of LC3-II and autophagy-related Beclin-1 protein, suggesting that spiroconazol A induces autophagy in A549 cells. Moreover, spiroconazol A activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but did not affect the phosphorylation of Janus kinase or ERK1/2. Notably, SB203580, a p38 MAPK inhibitor, had a significant inhibitory effect on spiroconazol A-induced autophagic cell death in A549 cells. Our results indicated that spiroconazol A-induced autophagy is dependent on p38 MAPK signaling and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yo Sook Ki
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Heon-Woo Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Jung-Hye Choi
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Léon Azefack Tapondjou
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 183, Cameroon;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
6
|
AF8c, a Multi-Kinase Inhibitor Induces Apoptosis by Activating DR5/Nrf2 via ROS in Colorectal Cancer Cells. Cancers (Basel) 2022; 14:cancers14133043. [PMID: 35804815 PMCID: PMC9264837 DOI: 10.3390/cancers14133043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary AF8c, a lapatinib hybrid quinazoline-based EGFR/HER2 inhibitor, was chosen to scrutinize its antiproliferative activity in colorectal cancer (CRC) cells. We found that AF8cinduced apoptosis in CRC cells via diverse mechanisms. In addition to inhibiting the phosphorylation of the ErbB family, AF8c increased the mRNA and protein levels of death receptor 5 (DR5) in vitro and in vivo. In addition, AF8c upregulated several ER stress proteins and the redox-sensitive nuclear respiratory factor 2 alpha subunit (Nrf2) in a p53-dependent manner. We also found that the AF8c-induced increase in the levels of Nrf2, DR5, and apoptosis was diminished by p53 downregulation or knockdown. Furthermore, AF8c showed higher antiproliferative activity than lapatinib in the CRC mouse model in vivo. Therefore, our results suggest AF8c as a highly effective polypharmacological small molecule with an encouraging safety profile, both in vitro and in vivo, for further evaluation as a treatment of CRC. Abstract Our team has previously reported a series of quinazoline-based lapatinib hybrids as potent kinase-targeting anticancer agents. Among them, AF8c showed a relatively safe profile in colorectal cancer (CRC) cells. In this study, we delineate a novel anticancer activity of AF8c in CRC cells. AF8c mediated p53-dependent apoptosis of CRC cells via the generation of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS), as well as activation of nuclear respiratory factor 2 alpha subunit (Nrf2) and death receptor 5 (DR5), among others. The silencing of DR5 attenuated the expression levels of Nrf2 and partially inhibited AF8c-induced apoptosis. Additionally, upregulation of Nrf2 by AF8c evoked apoptosis through a decrease in antioxidant levels. Treatment of a CRC mice model with AF8c also resulted in the upregulation of DR5, Nrf2, and CHOP proteins, subsequently leading to a significant decrease in tumor burden. In comparison with lapatinib, AF8c showed higher cellular antiproliferative activity at the tested concentrations in CRC cells and synergized TRAIL effects in CRC cells. Overall, our results suggest that AF8c-induced apoptosis may be associated with DR5/Nrf2 activation through ER stress and ROS generation in CRC cells. These findings indicate that AF8c represents a promising polypharmacological molecule for the treatment of human CRC.
Collapse
|