1
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
3
|
Keller CR, Martinez SR, Keltz A, Chen M, Li W. Lactate Oxidase Disrupts Lactate-Activated RAS and PI3K Oncogenic Signaling. Cancers (Basel) 2024; 16:2817. [PMID: 39199589 PMCID: PMC11353192 DOI: 10.3390/cancers16162817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
LOX was recently shown to inhibit cancer cell proliferation and tumor growth. The mechanism of this inhibition, however, has been exclusively attributed to LOX depletion of TME lactate, a cancer cell energy source, and production of H2O2, an oxidative stressor. We report that TME lactate triggers the assembly of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1)-associated protein complex, which includes GRB2, SOS1, KRAS, GAB1, and PI3K, for the activation of both the RAS and the PI3K oncogenic signaling pathways in breast cancer (BCa) cells. LOX treatment decreased the levels of the proteins in the protein complex via induction of their proteasomal degradation. In addition, LOX inhibited lactate-stimulated expression of the lactate transporters MCT1 and MCT4. Our data suggest that HCAR1 activation by lactate is crucial for the assembly and function of the RAS and PI3K signaling nexus. Shutting down lactate signaling by disrupting this nexus could be detrimental to cancer cells. HCAR1 is therefore a promising target for the control of the RAS and the PI3K signaling required for BCa progression. Thus, our study provides insights into lactate signaling regulation of cancer progression and extends our understanding of LOX's functional mechanisms that are fundamental for exploring its therapeutic potential.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic, Part of Optum, Everett, WA 98201, USA
- Providence Regional Cancer Partnership, Providence Regional Medical Center, Everett, WA 98201, USA
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Alexys Keltz
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Eastern Washington University, Cheney, WA 99004, USA
| | - Michelle Chen
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Ferris High School, Spokane, WA 99223, USA
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Gao X, Caruso BR, Li W. Advanced Hydrogels in Breast Cancer Therapy. Gels 2024; 10:479. [PMID: 39057502 PMCID: PMC11276203 DOI: 10.3390/gels10070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the most common malignancy among women and is the second leading cause of cancer-related death for women. Depending on the tumor grade and stage, breast cancer is primarily treated with surgery and antineoplastic therapy. Direct or indirect side effects, emotional trauma, and unpredictable outcomes accompany these traditional therapies, calling for therapies that could improve the overall treatment and recovery experiences of patients. Hydrogels, biomimetic materials with 3D network structures, have shown great promise for augmenting breast cancer therapy. Hydrogel implants can be made with adipogenic and angiogenic properties for tissue integration. 3D organoids of malignant breast tumors grown in hydrogels retain the physical and genetic characteristics of the native tumors, allowing for post-surgery recapitulation of the diseased tissues for precision medicine assessment of the responsiveness of patient-specific cancers to antineoplastic treatment. Hydrogels can also be used as carrier matrices for delivering chemotherapeutics and immunotherapeutics or as post-surgery prosthetic scaffolds. The hydrogel delivery systems could achieve localized and controlled medication release targeting the tumor site, enhancing efficacy and minimizing the adverse effects of therapeutic agents delivered by traditional procedures. This review aims to summarize the most recent advancements in hydrogel utilization for breast cancer post-surgery tissue reconstruction, tumor modeling, and therapy and discuss their limitations in clinical translation.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Benjamin R. Caruso
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
5
|
Teixeira AM, Martins P. A review of bioengineering techniques applied to breast tissue: Mechanical properties, tissue engineering and finite element analysis. Front Bioeng Biotechnol 2023; 11:1161815. [PMID: 37077233 PMCID: PMC10106631 DOI: 10.3389/fbioe.2023.1161815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Female breast cancer was the most prevalent cancer worldwide in 2020, according to the Global Cancer Observatory. As a prophylactic measure or as a treatment, mastectomy and lumpectomy are often performed at women. Following these surgeries, women normally do a breast reconstruction to minimize the impact on their physical appearance and, hence, on their mental health, associated with self-image issues. Nowadays, breast reconstruction is based on autologous tissues or implants, which both have disadvantages, such as volume loss over time or capsular contracture, respectively. Tissue engineering and regenerative medicine can bring better solutions and overcome these current limitations. Even though more knowledge needs to be acquired, the combination of biomaterial scaffolds and autologous cells appears to be a promising approach for breast reconstruction. With the growth and improvement of additive manufacturing, three dimensional (3D) printing has been demonstrating a lot of potential to produce complex scaffolds with high resolution. Natural and synthetic materials have been studied in this context and seeded mainly with adipose derived stem cells (ADSCs) since they have a high capability of differentiation. The scaffold must mimic the environment of the extracellular matrix (ECM) of the native tissue, being a structural support for cells to adhere, proliferate and migrate. Hydrogels (e.g., gelatin, alginate, collagen, and fibrin) have been a biomaterial widely studied for this purpose since their matrix resembles the natural ECM of the native tissues. A powerful tool that can be used in parallel with experimental techniques is finite element (FE) modeling, which can aid the measurement of mechanical properties of either breast tissues or scaffolds. FE models may help in the simulation of the whole breast or scaffold under different conditions, predicting what might happen in real life. Therefore, this review gives an overall summary concerning the human breast, specifically its mechanical properties using experimental and FE analysis, and the tissue engineering approaches to regenerate this particular tissue, along with FE models.
Collapse
Affiliation(s)
| | - Pedro Martins
- UBS, INEGI, LAETA, Porto, Portugal
- I3A, Universidad de Zaragoza, Zaragoza, Spain
- *Correspondence: Pedro Martins,
| |
Collapse
|
6
|
Identification of the Collagen Types Essential for Mammalian Breast Acinar Structures. Gels 2022; 8:gels8120837. [PMID: 36547361 PMCID: PMC9777629 DOI: 10.3390/gels8120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Modeling human breast tissue architecture is essential to study the pathophysiological conditions of the breast. We report that normal mammary epithelial cells grown in human breast extracellular matrix (ECM) hydrogel formed acini structurally similar to those of human and pig mammary tissues. Type I, II, III and V collagens were commonly identified in human, pig, and mouse breast ECM. Mammary epithelial cells formed acini on certain types or combinations of the four collagens at normal levels of breast tissue elasticity. Comparison of the collagen species in mouse normal breast and breast tumor ECM revealed common and distinct sets of collagens within the two types of tissues. Elevated expression of collagen type I alpha 1 chain (Col1a1) was found in mouse and human breast cancers. Collagen type XXV alpha 1 chain (Col25a1) was identified in mouse breast tumors but not in normal breast tissues. Our data provide strategies for modeling human breast pathophysiological structures and functions using native tissue-derived hydrogels and offer insight into the potential contributions of different collagen types in breast cancer development.
Collapse
|
7
|
Iazzolino G, Mendibil U, Arnaiz B, Ruiz-de-Angulo A, Azkargorta M, Uribe KB, Khatami N, Elortza F, Olalde B, Gomez-Vallejo V, Llop J, Abarrategi A. Decellularization of xenografted tumors provides cell-specific in vitro 3D environment. Front Oncol 2022; 12:956940. [PMID: 36059712 PMCID: PMC9434107 DOI: 10.3389/fonc.2022.956940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro cell culture studies are common in the cancer research field, and reliable biomimetic 3D models are needed to ensure physiological relevance. In this manuscript, we hypothesized that decellularized xenograft tumors can serve as an optimal 3D substrate to generate a top-down approach for in vitro tumor modeling. Multiple tumor cell lines were xenografted and the formed solid tumors were recovered for their decellularization by several techniques and further characterization by histology and proteomics techniques. Selected decellularized tumor xenograft samples were seeded with the HCC1806 human triple-negative breast cancer (TNBC) basal-like subtype cell line, and cell behavior was compared among them and with other control 2D and 3D cell culture methods. A soft treatment using Freeze-EDTA-DNAse allows proper decellularization of xenografted tumor samples. Interestingly, proteomic data show that samples decellularized from TNBC basal-like subtype xenograft models had different extracellular matrix (ECM) compositions compared to the rest of the xenograft tumors tested. The in vitro recellularization of decellularized ECM (dECM) yields tumor-type–specific cell behavior in the TNBC context. Data show that dECM derived from xenograft tumors is a feasible substrate for reseeding purposes, thereby promoting tumor-type–specific cell behavior. These data serve as a proof-of-concept for further potential generation of patient-specific in vitro research models.
Collapse
Affiliation(s)
- Gaia Iazzolino
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Blanca Arnaiz
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Ane Ruiz-de-Angulo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Kepa B. Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Neda Khatami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Vanessa Gomez-Vallejo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Jordi Llop
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Ander Abarrategi,
| |
Collapse
|