1
|
Lim JJY, Murata Y, Yuri S, Kitamuro K, Kawai T, Isotani A. Generating an organ-deficient animal model using a multi-targeted CRISPR-Cas9 system. Sci Rep 2024; 14:10636. [PMID: 38724644 PMCID: PMC11082136 DOI: 10.1038/s41598-024-61167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNAms system that induces cell death with a single-guide RNA (sgRNAms) targeting multiple sites in the genome. The Cas9-sgRNAms system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNAms at the Rosa26 locus (Foxn1Cas9; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1Cas9; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNAms system because Rosa26_ms could be maintained as homozygous.
Collapse
Affiliation(s)
- Jonathan Jun-Yong Lim
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yamato Murata
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Shunsuke Yuri
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Kohei Kitamuro
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ayako Isotani
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan.
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
2
|
Zeng J, Zeng XX. Systems Medicine for Precise Targeting of Glioblastoma. Mol Biotechnol 2023; 65:1565-1584. [PMID: 36859639 PMCID: PMC9977103 DOI: 10.1007/s12033-023-00699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Glioblastoma (GBM) is a malignant cancer that is fatal even after standard therapy and the effects of current available therapeutics are not promising due its complex and evolving epigenetic and genetic profile. The mysteries that lead to GBM intratumoral heterogeneity and subtype transitions are not entirely clear. Systems medicine is an approach to view the patient in a whole picture integrating systems biology and synthetic biology along with computational techniques. Since the GBM oncogenesis involves genetic mutations, various therapies including gene therapeutics based on CRISPR-Cas technique, MicroRNAs, and implanted synthetic cells endowed with synthetic circuits against GBM with neural stem cells and mesenchymal stem cells acting as potential vehicles carrying therapeutics via the intranasal route, avoiding the risks of invasive methods in order to reach the GBM cells in the brain are discussed and proposed in this review. Systems medicine approach is a rather novel strategy, and since the GBM of a patient is complex and unique, thus to devise an individualized treatment strategy to tailor personalized multimodal treatments for the individual patient taking into account the phenotype of the GBM, the unique body health profile of the patient and individual responses according to the systems medicine concept might show potential to achieve optimum effects.
Collapse
Affiliation(s)
- Jie Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou, 213022 Jiangsu People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan, 528000 Guangdong People’s Republic of China
| |
Collapse
|
3
|
Wichmann M, Maire CL, Nuppenau N, Habiballa M, Uhde A, Kolbe K, Schröder T, Lamszus K, Fehse B, Głów D. Deep Characterization and Comparison of Different Retrovirus-like Particles Preloaded with CRISPR/Cas9 RNPs. Int J Mol Sci 2023; 24:11399. [PMID: 37511168 PMCID: PMC10380221 DOI: 10.3390/ijms241411399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and "enhanced" egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application.
Collapse
Affiliation(s)
- Max Wichmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Niklas Nuppenau
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Moataz Habiballa
- Institute of Neuroanatomy, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Almut Uhde
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Katharina Kolbe
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Tanja Schröder
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
4
|
Amberger M, Grueso E, Ivics Z. CRISISS: A Novel, Transcriptionally and Post-Translationally Inducible CRISPR/Cas9-Based Cellular Suicide Switch. Int J Mol Sci 2023; 24:9799. [PMID: 37372948 DOI: 10.3390/ijms24129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
With the ever-increasing developing rate of gene and cellular therapy applications and growing accessibility due to products receiving regulatory approval, the need for effective and reliable safety mechanisms to prevent or eliminate potentially fatal side effects is of the utmost importance. In this study, we present the CRISPR-induced suicide switch (CRISISS) as a tool to eliminate genetically modified cells in an inducible and highly efficient manner by targeting Cas9 to highly repetitive Alu retrotransposons in the human genome, causing irreparable genomic fragmentation by the Cas9 nuclease and resulting cell death. The suicide switch components, including expression cassettes for a transcriptionally and post-translationally inducible Cas9 and an Alu-specific single-guide RNA, were integrated into the genome of target cells via Sleeping-Beauty-mediated transposition. The resulting transgenic cells did not show signs of any impact on overall fitness when uninduced, as unintended background expression, background DNA damage response and background cell killing were not observed. When induced, however, a strong expression of Cas9, a strong DNA damage response and a rapid halt of cell proliferation coupled with near complete cell death within four days post-induction were seen. With this proof-of-concept study, we present a novel and promising approach for a robust suicide switch with potential utility for gene and cell therapy in the future.
Collapse
Affiliation(s)
- Maximilian Amberger
- Research Center, Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Esther Grueso
- Research Center, Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Zoltán Ivics
- Research Center, Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, 63225 Langen, Germany
| |
Collapse
|
5
|
Chira S, Nutu A, Isacescu E, Bica C, Pop L, Ciocan C, Berindan-Neagoe I. Genome Editing Approaches with CRISPR/Cas9 for Cancer Treatment: Critical Appraisal of Preclinical and Clinical Utility, Challenges, and Future Research. Cells 2022; 11:cells11182781. [PMID: 36139356 PMCID: PMC9496708 DOI: 10.3390/cells11182781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing burden on human malignant diseases became a major concern for healthcare practitioners, that must deal with tumor relapse and the inability to efficiently treat metastasis, in addition to side effects. Throughout the decades, many therapeutic strategies have been employed to improve the clinical outcomes of cancer patients and great efforts have been made to develop more efficient and targeted medicines. The malignant cell is characterized by genetic and epigenetic modifications, therefore targeting those specific drivers of carcinogenesis is highly desirable. Among the genome editing technologies, CRISPR/Cas9 stood as a promising candidate for cancer treatment alternatives, due to its low complexity design. First described as a defense mechanism of bacteria against invading foreign DNA, later it was shown that CRISPR components can be engineered to target specific DNA sequences in a test tube, a discovery that was awarded later with the Nobel Prize in chemistry for its rapid expansion as a reliable genome editing tool in many fields of research, including medicine. The present paper aims of describing CRISPR/Cas9 potential targets for malignant disorders, and the approaches used for achieving this goal. Aside from preclinical studies, we also present the clinical trials that use CRISPR-based technology for therapeutic purposes of cancer. Finally, a summary of the presented studies adds a more focused view of the therapeutic value CRISPR/Cas9 holds and the associated shortcomings.
Collapse
|