1
|
Mansor M, Yang C, Chong KL, Jamrus MA, Liu K, Yu M, Ahmad MR, Ren X. Label-Free and Rapid Microfluidic Design Rules for Circulating Tumor Cell Enrichment and Isolation: A Review and Simulation Analysis. ACS OMEGA 2025; 10:6306-6322. [PMID: 40028152 PMCID: PMC11866005 DOI: 10.1021/acsomega.4c08606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Enriching and isolating circulating tumor cells (CTCs) have attracted significant interest due to their important role in early cancer diagnosis and prognosis, allowing for minimally invasive approaches and providing vital information about metastasis at the cellular level. This review comprehensively summarizes the recent developments in microfluidic devices for CTC enrichment and isolation. The advantages and limitations of several microfluidic devices are discussed, and the design specifications of microfluidic devices for CTC enrichment are highlighted. We also developed a set of methodologies and design rules of label-free microfluidics such as spiral, deterministic lateral displacement (DLD) and dielectrophoresis (DEP) to allow researchers to design and develop microfluidic devices systematically and effectively, promoting rapid research on design, fabrication, and experimentation.
Collapse
Affiliation(s)
- Muhammad
Asraf Mansor
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Chun Yang
- School
of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Kar Lok Chong
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Asyraf Jamrus
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Kewei Liu
- Sino-German
College of Intelligent Manufacturing, Shenzhen
Technology University, Shenzhen 518118, China
| | - Miao Yu
- Department
of Research and Development, Stedical Scientific, Carlsbad, California 92010, United States
| | - Mohd Ridzuan Ahmad
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Xiang Ren
- School
of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Joshi R, Ahmadi H, Gardner K, Bright RK, Wang W, Li W. Advances in microfluidic platforms for tumor cell phenotyping: from bench to bedside. LAB ON A CHIP 2025; 25:856-883. [PMID: 39774602 PMCID: PMC11859771 DOI: 10.1039/d4lc00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Heterogeneities among tumor cells significantly contribute towards cancer progression and therapeutic inefficiency. Hence, understanding the nature of cancer through liquid biopsies and isolation of circulating tumor cells (CTCs) has gained considerable interest over the years. Microfluidics has emerged as one of the most popular platforms for performing liquid biopsy applications. Various label-free and labeling techniques using microfluidic platforms have been developed, the majority of which focus on CTC isolation from normal blood cells. However, sorting and profiling of various cell phenotypes present amongst those CTCs is equally important for prognostics and development of personalized therapies. In this review, firstly, we discuss the biophysical and biochemical heterogeneities associated with tumor cells and CTCs which contribute to cancer progression. Moreover, we discuss the recently developed microfluidic platforms for sorting and profiling of tumor cells and CTCs. These techniques are broadly classified into biophysical and biochemical phenotyping methods. Biophysical methods are further classified into mechanical and electrical phenotyping. While biochemical techniques have been categorized into surface antigen expressions, metabolism, and chemotaxis-based phenotyping methods. We also shed light on clinical studies performed with these platforms over the years and conclude with an outlook for the future development in this field.
Collapse
Affiliation(s)
- Rutwik Joshi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hesaneh Ahmadi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karl Gardner
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Robert K Bright
- Department of Immunology & Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Szerenyi D, Jarvas G, Guttman A. Multifaceted Approaches in Epithelial Cell Adhesion Molecule-Mediated Circulating Tumor Cell Isolation. Molecules 2025; 30:976. [PMID: 40076201 PMCID: PMC11901967 DOI: 10.3390/molecules30050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Circulating tumor cells (CTCs) are pivotal in cancer metastasis and serve as valuable biomarkers for diagnosis, prognosis, and treatment monitoring. Traditional CTC capture methods predominantly utilize the epithelial cell adhesion molecule (EpCAM) as a marker for isolation. However, the heterogeneity of these circulating cells and the epithelial-to-mesenchymal transition process (wherein epithelial cells acquire mesenchymal characteristics) limit the efficacy of EpCAM-based capture techniques. In this paper, we critically review the role of the EpCAM in CTC capture, explore the impact of epithelial-to-mesenchymal transition on EpCAM expression, and discuss alternative biomarkers and strategies to enhance CTC isolation. By evaluating the limitations of EpCAM-mediated capture and the challenges posed by epithelial-to-mesenchymal transition, we aim to provide insights into the development of more comprehensive liquid biopsy approaches for cancer management.
Collapse
Affiliation(s)
- Dora Szerenyi
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, 8200 Veszprem, Hungary;
| | - Gabor Jarvas
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, 8200 Veszprem, Hungary;
- CAPTEC Medical Ltd., 8200 Veszprem, Hungary
| | - Andras Guttman
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, 8200 Veszprem, Hungary;
- CAPTEC Medical Ltd., 8200 Veszprem, Hungary
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Liu C, Cai Y, Mou S. Liquid biopsy in lung cancer: The role of circulating tumor cells in diagnosis, treatment, and prognosis. Biomed Pharmacother 2024; 181:117726. [PMID: 39612860 DOI: 10.1016/j.biopha.2024.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Despite numerous therapeutic advancements, such as immune checkpoint inhibitors, lung cancer continues to be the leading cause of cancer-related mortality. Therefore, the identification of cancer at an early stage is becoming a significant subject in contemporary oncology. Despite significant advancements in early detection tactics in recent decades, they continue to provide challenges because of the inconspicuous symptoms observed during the early stages of the primary tumor. Presently, tumor biomarkers and imaging techniques are extensively employed across different forms of cancer. Nevertheless, every approach has its own set of constraints. In certain instances, the detriments outweigh the advantages. Hence, there is an urgent need to enhance early detection methods. Currently, liquid biopsy is considered more flexible and not intrusive method in comparison to conventional test for early detection. Circulating tumor cells (CTCs) are crucial components of liquid biopsy and have a pivotal function in the spread and formation of secondary tumors. These indicators show great promise in the early identification of cancer. This study presents a comprehensive examination of the methodologies employed for the isolation and enrichment of circulating tumor cells (CTCs) in lung cancer. Additionally, it explores the formation of clusters of CTCs, which have a pivotal function in facilitating the effective dissemination of cancer to distant organs. In addition, we discuss the importance of CTCs in the detection, treatment, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| | - Yanqun Cai
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Sihua Mou
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| |
Collapse
|
6
|
Russo GI, Musso N, Romano A, Caruso G, Petralia S, Lanzanò L, Broggi G, Camarda M. Correction: Russo et al. The Role of Dielectrophoresis for Cancer Diagnosis and Prognosis. Cancers 2022, 14, 198. Cancers (Basel) 2024; 16:3258. [PMID: 39410051 PMCID: PMC11475964 DOI: 10.3390/cancers16193258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/20/2024] Open
Abstract
Reference [...].
Collapse
Affiliation(s)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy
- STLab s.r.l., Via Anapo 53, 95126 Catania, Italy;
| | - Alessandra Romano
- Haematological Section, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (S.P.)
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (S.P.)
| | - Luca Lanzanò
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Broggi
- Pathology Section, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | |
Collapse
|
7
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
8
|
Crocetto F, Falcone A, Mirto BF, Sicignano E, Pagano G, Dinacci F, Varriale D, Machiella F, Giampaglia G, Calogero A, Varlese F, Balsamo R, Trama F, Sciarra A, Del Giudice F, Busetto GM, Ferro M, Lucarelli G, Lasorsa F, Imbimbo C, Barone B. Unlocking Precision Medicine: Liquid Biopsy Advancements in Renal Cancer Detection and Monitoring. Int J Mol Sci 2024; 25:3867. [PMID: 38612677 PMCID: PMC11011885 DOI: 10.3390/ijms25073867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Renal cell carcinoma (RCC) remains a formidable diagnostic challenge, especially in the context of small renal masses. The quest for non-invasive screening tools and biomarkers has steered research towards liquid biopsy, focusing on microRNAs (miRNAs), exosomes, and circulating tumor cells (CTCs). MiRNAs, small non-coding RNAs, exhibit notable dysregulation in RCC, offering promising avenues for diagnosis and prognosis. Studies underscore their potential across various biofluids, including plasma, serum, and urine, for RCC detection and subtype characterization. Encouraging miRNA signatures show correlations with overall survival, indicative of their future relevance in RCC management. Exosomes, with their diverse molecular cargo, including miRNAs, emerge as enticing biomarkers, while CTCs, emanating from primary tumors into the bloodstream, provide valuable insights into cancer progression. Despite these advancements, clinical translation necessitates further validation and standardization, encompassing larger-scale studies and robust evidence generation. Currently lacking approved diagnostic assays for renal cancer, the potential future applications of liquid biopsy in follow-up care, treatment selection, and outcome prediction in RCC patients are profound. This review aims to discuss and highlight recent advancements in liquid biopsy for RCC, exploring their strengths and weaknesses in the comprehensive management of this disease.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Alfonso Falcone
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Benito Fabio Mirto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Enrico Sicignano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Giovanni Pagano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Fabrizio Dinacci
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Domenico Varriale
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Fabio Machiella
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Gaetano Giampaglia
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Armando Calogero
- Department of Advanced Biomedical Science, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (F.V.)
| | - Filippo Varlese
- Department of Advanced Biomedical Science, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (F.V.)
| | | | - Francesco Trama
- ASL Napoli 2 Nord, P.O. Santa Maria delle Grazie, 80078 Pozzuoli, Italy;
| | - Antonella Sciarra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Francesco Del Giudice
- Department of Maternal Infant and Urological Sciences, Umberto I Polyclinic Hospital, Sapienza University, 00161 Rome, Italy;
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy;
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, 20141 Milan, Italy;
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Biagio Barone
- Urology Unit, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy
| |
Collapse
|
9
|
Jani C, Abdallah N, Tan A, Mckay RR. Liquid biopsy for Renal Cell Carcinoma: A comprehensive review of techniques, applications, and future prospects. KIDNEY CANCER 2024; 8:205-225. [PMID: 39886007 PMCID: PMC11781563 DOI: 10.1177/24684570241303346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Liquid biopsy techniques have developed rapidly in recent years and demonstrated success in cancer detection, disease characterization, and ongoing disease monitoring. These components, including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and cell-free DNA (cfDNA), offer minimally invasive diagnostic tools that provide valuable insights into the genomic landscape of tumors. Its applications have expanded to include various malignancies, including renal cell carcinoma (RCC). RCC, a heterogeneous malignancy, poses unique diagnostic and therapeutic challenges. Up to 40% of patients experience recurrence or metastasis following initial surgical resection, necessitating the need for precise diagnostic and prognostic tools. The application of liquid biopsy in RCC, particularly through CTCs and ctDNA/cfDNA, holds significant promise. This review first delves into the various methodologies of CTC and cfDNA/ctDNA detection in RCC and highlights their roles in RCC management. Next, we discuss in depth about current existing evidence for the utilization of liquid biopsy in RCC diagnosis, prognosis, treatment outcomes prediction and association with the progression of the disease. Despite advancements, RCC's biological features, including low ctDNA shedding and significant intratumoral heterogeneity, present challenges in the clinical application of liquid biopsy. The review also discusses the limitations of current techniques and emphasizes the need for standardized protocols and further validation in large, diverse cohorts. Future directions include integrating liquid biopsy with advanced imaging techniques and leveraging artificial intelligence to improve RCC diagnostics and patient management. With continued refinement, liquid biopsy could become an essential tool in personalized oncology, improving outcomes for RCC patients.
Collapse
Affiliation(s)
- Chinmay Jani
- University of Miami-Sylvester Comprehensive Cancer Center/Jackson Health System, Miami, FL, USA
| | | | - Alan Tan
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rana R. Mckay
- University of California San Diego, San Diego, CA, USA
| |
Collapse
|
10
|
Rane A, Jarmoshti J, Siddique AB, Adair S, Torres-Castro K, Honrado C, Bauer TW, Swami NS. Dielectrophoretic enrichment of live chemo-resistant circulating-like pancreatic cancer cells from media of drug-treated adherent cultures of solid tumors. LAB ON A CHIP 2024; 24:561-571. [PMID: 38174422 PMCID: PMC10826460 DOI: 10.1039/d3lc00804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Due to low numbers of circulating tumor cells (CTCs) in liquid biopsies, there is much interest in enrichment of alternative circulating-like mesenchymal cancer cell subpopulations from in vitro tumor cultures for utilization within molecular profiling and drug screening. Viable cancer cells that are released into the media of drug-treated adherent cancer cell cultures exhibit anoikis resistance or anchorage-independent survival away from their extracellular matrix with nutrient sources and waste sinks, which serves as a pre-requisite for metastasis. The enrichment of these cell subpopulations from tumor cultures can potentially serve as an in vitro source of circulating-like cancer cells with greater potential for scale-up in comparison with CTCs. However, these live circulating-like cancer cell subpopulations exhibit size overlaps with necrotic and apoptotic cells in the culture media, which makes it challenging to selectively enrich them, while maintaining them in their suspended state. We present optimization of a flowthrough high frequency (1 MHz) positive dielectrophoresis (pDEP) device with sequential 3D field non-uniformities that enables enrichment of the live chemo-resistant circulating cancer cell subpopulation from an in vitro culture of metastatic patient-derived pancreatic tumor cells. Central to this strategy is the utilization of single-cell impedance cytometry with gates set by supervised machine learning, to optimize the frequency for pDEP, so that live circulating cells are selected based on multiple biophysical metrics, including membrane physiology, cytoplasmic conductivity and cell size, which is not possible using deterministic lateral displacement that is solely based on cell size. Using typical drug-treated samples with low levels of live circulating cells (<3%), we present pDEP enrichment of the target subpopulation to ∼44% levels within 20 minutes, while rejecting >90% of dead cells. This strategy of utilizing single-cell impedance cytometry to guide the optimization of dielectrophoresis has implications for other complex biological samples.
Collapse
Affiliation(s)
- Aditya Rane
- Chemistry, University of Virginia, Charlottesville, USA.
| | - Javad Jarmoshti
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| | | | - Sara Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | | | - Carlos Honrado
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Nathan S Swami
- Chemistry, University of Virginia, Charlottesville, USA.
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| |
Collapse
|
11
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|
12
|
Temilola DO, Adeola HA, Grobbelaar J, Chetty M. Liquid Biopsy in Head and Neck Cancer: Its Present State and Future Role in Africa. Cells 2023; 12:2663. [PMID: 37998398 PMCID: PMC10670726 DOI: 10.3390/cells12222663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The rising mortality and morbidity rate of head and neck cancer (HNC) in Africa has been attributed to factors such as the poor state of health infrastructures, genetics, and late presentation resulting in the delayed diagnosis of these tumors. If well harnessed, emerging molecular and omics diagnostic technologies such as liquid biopsy can potentially play a major role in optimizing the management of HNC in Africa. However, to successfully apply liquid biopsy technology in the management of HNC in Africa, factors such as genetic, socioeconomic, environmental, and cultural acceptability of the technology must be given due consideration. This review outlines the role of circulating molecules such as tumor cells, tumor DNA, tumor RNA, proteins, and exosomes, in liquid biopsy technology for the management of HNC with a focus on studies conducted in Africa. The present state and the potential opportunities for the future use of liquid biopsy technology in the effective management of HNC in resource-limited settings such as Africa is further discussed.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Henry Ademola Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Johan Grobbelaar
- Division of Otorhinolaryngology, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| |
Collapse
|
13
|
Tivig I, Moisescu MG, Savopol T. OpenDEP: An Open-Source Platform for Dielectrophoresis Spectra Acquisition and Analysis. ACS OMEGA 2023; 8:38715-38722. [PMID: 37867645 PMCID: PMC10586268 DOI: 10.1021/acsomega.3c06052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Dielectrophoretic (DEP) cell separation, which utilizes electric fields to selectively manipulate and separate cells based on their electrical properties, has emerged as a cutting-edge label-free technique. DEP separation techniques rely on differences in the electrical and morphological properties of cells, which can be obtained by a thorough analysis of DEP spectra. This article presents a novel platform, named OpenDEP, for acquiring and processing DEP spectra of suspended cells. The platform consists of lab-on-a-chip and open-source software that enables the determination of DEP spectra and electric parameters. The performance of OpenDEP was validated by comparing the results obtained using this platform with the results obtained using a commercially available device, 3DEP from DEPtech. The lab-on-a-chip design features two indium tin oxide-coated slides with a specific geometry, forming a chamber where cells are exposed to an inhomogeneous alternating electric field with different frequencies, and microscopic images of cell distributions are acquired. A custom-built software written in the Python programing language was developed to convert the acquired images into DEP spectra, allowing for the estimation of membrane and cytoplasm conductivities and permittivities. The platform was validated using two cell lines, DC3F and NIH 3T3. The OpenDEP platform offers several advantages, including easy manufacturing, statistically robust computations due to large cell population analysis, and a closed environment for sterile work. Furthermore, continuous observation using any microscope allows for integration with other techniques.
Collapse
Affiliation(s)
- Ioan Tivig
- Biophysics and Cellular Biotechnology
Department, Excellence Center for Research in Biophysics and Cellular
Biotechnology, Faculty of Medicine, Carol
Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., Bucharest 050474, Romania
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology
Department, Excellence Center for Research in Biophysics and Cellular
Biotechnology, Faculty of Medicine, Carol
Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., Bucharest 050474, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology
Department, Excellence Center for Research in Biophysics and Cellular
Biotechnology, Faculty of Medicine, Carol
Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., Bucharest 050474, Romania
| |
Collapse
|
14
|
Han X, Xu X, Yang C, Liu G. Microfluidic design in single-cell sequencing and application to cancer precision medicine. CELL REPORTS METHODS 2023; 3:100591. [PMID: 37725985 PMCID: PMC10545941 DOI: 10.1016/j.crmeth.2023.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Single-cell sequencing (SCS) is a crucial tool to reveal the genetic and functional heterogeneity of tumors, providing unique insights into the clonal evolution, microenvironment, drug resistance, and metastatic progression of cancers. Microfluidics is a critical component of many SCS technologies and workflows, conferring advantages in throughput, economy, and automation. Here, we review the current landscape of microfluidic architectures and sequencing techniques for single-cell omics analysis and highlight how these have enabled recent applications in oncology research. We also discuss the challenges and the promise of microfluidics-based single-cell analysis in the future of precision oncology.
Collapse
Affiliation(s)
- Xin Han
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xing Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China; Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related 12 Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Chaoyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China; Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related 12 Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
15
|
Wang W, Zheng Z, Lei J. CTC, ctDNA, and Exosome in Thyroid Cancers: A Review. Int J Mol Sci 2023; 24:13767. [PMID: 37762070 PMCID: PMC10530859 DOI: 10.3390/ijms241813767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thyroid cancer has become more common in recent years all around the world. Many issues still need to be urgently addressed in the diagnosis, treatment, and prognosis of thyroid cancer. Liquid biopsy (mainly circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating exosomes) may provide a novel and ideal approach to solve these issues, allows us to assess the features of diseases more comprehensively, and has a function in a variety of malignancies. Recently, liquid biopsy has been shown to be critical in thyroid cancer diagnosis, treatment, and prognosis in numerous previous studies. In this review, by testing CTCs, ctDNA, and exosomes, we focus on the possible clinical role of liquid biopsy in thyroid cancer, including diagnostic and prognostic biomarkers and response to therapy. We briefly review how liquid biopsy components have progressed in thyroid cancer by consulting the existing public information. We also discuss the clinical potential of liquid biopsy in thyroid cancer and provide a reference for liquid biopsy research. Liquid biopsy has the potential to be a useful tool in the early detection, monitoring, or prediction of response to therapies and prognosis in thyroid cancer, with promising clinical applications.
Collapse
Affiliation(s)
- Wenwen Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Duncan JL, Bloomfield M, Swami N, Cimini D, Davalos RV. High-Frequency Dielectrophoresis Reveals That Distinct Bio-Electric Signatures of Colorectal Cancer Cells Depend on Ploidy and Nuclear Volume. MICROMACHINES 2023; 14:1723. [PMID: 37763886 PMCID: PMC10535145 DOI: 10.3390/mi14091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression.
Collapse
Affiliation(s)
- Josie L. Duncan
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nathan Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
17
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
18
|
Sharbati P, Sadaghiani AK, Koşar A. New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation. BIOSENSORS 2023; 13:bios13040418. [PMID: 37185493 PMCID: PMC10135750 DOI: 10.3390/bios13040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
This study introduces a new generation of dielectrophoretic-based microfluidic device for the precise separation of multiple particle/cell types. The device features two sets of 3D electrodes, namely cylindrical and sidewall electrodes. The main channel of the device terminates with three outlets: one in the middle for particles that sense negative dielectrophoresis force and two others at the right and left sides for particles that sense positive dielectrophoresis force. To evaluate the device performance, we used red blood cells (RBCs), T-cells, U937-MC cells, and Clostridium difficile bacteria as our test subjects. Our results demonstrate that the proposed microfluidic device could accurately separate bioparticles in two steps, with sidewall electrodes of 200 µm proving optimal for efficient separation. Applying different voltages for each separation step, we found that the device performed most effectively at 6 Vp-p applied to the 3D electrodes, and at 20 Vp-p and 11 Vp-p applied to the sidewall electrodes for separating RBCs from bacteria and T-cells from U937-MC cells, respectively. Notably, the device's maximum electric fields remained below the cell electroporation threshold, and we achieved a separation efficiency of 95.5% for multi-type particle separation. Our findings proved the device's capacity for separating multiple particle types with high accuracy, without limitation for particle variety.
Collapse
Affiliation(s)
- Pouya Sharbati
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology and Applications Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Abdolali K Sadaghiani
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology and Applications Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology and Applications Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
19
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
20
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M, Srovnal J. Recent Advances in Methods for Circulating Tumor Cell Detection. Int J Mol Sci 2023; 24:3902. [PMID: 36835311 PMCID: PMC9959336 DOI: 10.3390/ijms24043902] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Hanus Slavik
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
21
|
Is There a Role of Warburg Effect in Prostate Cancer Aggressiveness? Analysis of Expression of Enzymes of Lipidic Metabolism by Immunohistochemistry in Prostate Cancer Patients (DIAMOND Study). Cancers (Basel) 2023; 15:cancers15030948. [PMID: 36765905 PMCID: PMC9913228 DOI: 10.3390/cancers15030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Prostate Cancer (PCa) is still ranked as the first cancer in the male population and evidences have suggested an alteration of glycemic and lipidic metabolism that are related to its progression and prognosis. The aim of the study is to investigate associations between enzymes' expression, especially involved in the lipidic pathway, and PCa aggressiveness. We retrospectively analyzed data from 390 patients with PCa or benign prostatic hyperplasia (BPH) at the Department of Urology, University of Catania. Immunohistochemical slides were evaluated for the expression of proteins related to glucose and lipidic metabolism. A total of 286 were affected by PCa while 104 by BPH. We demonstrated that ATP-lyase (odds ratio [OR]: 1.71; p < 0.01), fatty acid synthase (OR: 4.82; p < 0.01), carnitine palmitoyl transferase-1a (OR: 2.27; p < 0.05) were associated with androgen receptor (AR) expression. We found that steaoryl Co-A desaturase expression in PCa patients with total cholesterol ≥ 200 mg/dL was independently associated with ISUP ≥4 (OR: 4.22; p = 0.049). We found that CPT-1a+ was associated with biochemical recurrence (hazard ratio: 1.94; p = 0.03]). Our results support the evidence that the manipulation of lipidic metabolism could serve in the future to contrast PCa progression.
Collapse
|
22
|
Liu J, Jin Q, Geng J, Xia J, Wu Y, Chen H. Fast Capture and Efficient Removal of Bloom Algae Based on Improved Dielectrophoresis Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:832. [PMID: 36613154 PMCID: PMC9819516 DOI: 10.3390/ijerph20010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
A dielectrophoresis (DEP) method for direct capture and fast removal of Anabaena was established in this work. The factors affecting the removal efficiency of Anabaena were investigated systematically, leading to optimized experimental conditions and improved DEP process equipment. The experimental results showed that our improved DEP method could directly capture Anabaena in eutrophic water with much enhanced removal efficiency of Anabaena from high-concentration algal bloom-eutrophication-simulated solution. The removal rate could increase by more than 20% after applying DEP at 15 V compared with a pure filtration process. Moreover, the removal rate could increase from 38.76% to 80.18% in optimized experimental conditions (the initial concentration of 615 μg/L, a flow rate of 0.168 L/h, an AC voltage of 15 V, and frequency of 100 kHz). Optical microscopic images showed that the structure of the captured algae cells was intact, indicating that the DEP method could avoid the secondary pollution caused by the addition of reagents and the release of phycotoxins, providing a new practical method for emergent treatment of water bloom outbreaks.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Qinghao Jin
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Junfeng Geng
- Institute for Materials Research and Innovation, Institute for Renewable Energy and Environmental Technologies, University of Bolton, Deane Road, Bolton BL3 5AB, UK
| | - Jianxin Xia
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Yanhong Wu
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Huiying Chen
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| |
Collapse
|
23
|
Couto-Cunha A, Jerónimo C, Henrique R. Circulating Tumor Cells as Biomarkers for Renal Cell Carcinoma: Ready for Prime Time? Cancers (Basel) 2022; 15:cancers15010287. [PMID: 36612281 PMCID: PMC9818240 DOI: 10.3390/cancers15010287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is among the 15 most common cancers worldwide, with rising incidence. In most cases, this is a silent disease until it reaches advance stages, demanding new effective biomarkers in all domains, from detection to post-therapy monitoring. Circulating tumor cells (CTC) have the potential to provide minimally invasive information to guide assessment of the disease's aggressiveness and therapeutic strategy, representing a special pool of neoplastic cells which bear metastatic potential. In some tumor models, CTCs' enumeration has been associated with prognosis, but there is a largely unexplored potential for clinical applicability encompassing screening, diagnosis, early detection of metastases, prognosis, response to therapy and monitoring. Nonetheless, lack of standardization and high cost hinder the translation into clinical practice. Thus, new methods for collection and analysis (genomic, proteomic, transcriptomic, epigenomic and metabolomic) are needed to ascertain the role of CTC as a RCC biomarker. Herein, we provide a critical overview of the most recently published data on the role and clinical potential of CTCs in RCC, addressing their biology and the molecular characterization of this remarkable set of tumor cells. Furthermore, we highlight the existing and emerging techniques for CTC enrichment and detection, exploring clinical applications in RCC. Notwithstanding the notable progress in recent years, the use of CTCs in a routine clinical scenario of RCC patients requires further research and technological development, enabling multimodal analysis to take advantage of the wealth of information they provide.
Collapse
Affiliation(s)
- Anabela Couto-Cunha
- Integrated Master in Medicine, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: or
| |
Collapse
|
24
|
Impact of buffer composition on biochemical, morphological and mechanical parameters: A tare before dielectrophoretic cell separation and isolation. Transl Oncol 2022; 28:101599. [PMID: 36516639 PMCID: PMC9764254 DOI: 10.1016/j.tranon.2022.101599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Dielectrophoresis (DEP) represents an electrokinetic approach for discriminating and separating suspended cells based on their intrinsic dielectric characteristics without the need for labeling procedure. A good practice, beyond the physical and engineering components, is the selection of a buffer that does not hinder cellular and biochemical parameters as well as cell recovery. In the present work the impact of four buffers on biochemical, morphological, and mechanical parameters was evaluated in two different cancer cell lines (Caco-2 and K562). Specifically, MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) assay along with flow cytometry analysis were used to evaluate the occurring changes in terms of cell viability, morphology, and granulocyte stress formation, all factors directly influencing DEP sorting capability. Quantitative real-time PCR (qRT-PCR) was instead employed to evaluate the gene expression levels of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), two well-known markers of inflammation and oxidative stress, respectively. An additional marker representing an index of cellular metabolic status, i.e. the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, was also evaluated. Among the four buffers considered, two resulted satisfactory in terms of cell viability and growth recovery (24 h), with no significant changes in cell morphology for up to 1 h in suspension. Of note, gene expression analysis showed that in both cell lines the apparently non-cytotoxic buffers significantly modulated IL-6, iNOS, and GAPDH markers, underlining the importance to deeply investigate the molecular and biochemical changes occurring during the analysis, even at apparently non-toxic conditions. The selection of a useful buffer for the separation and analysis of cells without labeling procedures, preserving cell status, represents a key factor for DEP analysis, giving the opportunity to further use cells for additional analysis.
Collapse
|
25
|
Olariu MA, Tucureanu C, Filip TA, Caras I, Salageanu A, Vasile V, Avram M, Tincu B, Turcan I. HT-29 Colon Cancer Cell Electromanipulation and Assessment Based on Their Electrical Properties. MICROMACHINES 2022; 13:1833. [PMID: 36363854 PMCID: PMC9698395 DOI: 10.3390/mi13111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
This study proposes a feasible approach for the rapid, sensitive, and label-free identification of cancerous cells based on dielectrophoretic (DEP) manipulation and electrical characterization. In this method, the concentration of target cells at the level of customized microelectrodes via DEP is first determined, followed by an electrical impedance evaluation. The study demonstrates the capacity of the methodology to electrically differentiate HT-29 cancer cells from healthy blood cells based on their impedance spectra. Within a higher frequency domain, the electrical impedance of trapped cancer cells was significantly lower compared with the normal ones. In order to evaluate the functionality and reproducibility of the proposed method, the influence of the DEP and EIS (electrical impedance spectroscopy) operating voltages on the electrical characterization of trapped HT-29 cells was analyzed.
Collapse
Affiliation(s)
- Marius Andrei Olariu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Catalin Tucureanu
- Cantacuzino, National Medical-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Tudor Alexandru Filip
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania
| | - Iuliana Caras
- Cantacuzino, National Medical-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Aurora Salageanu
- Cantacuzino, National Medical-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Valentin Vasile
- Cantacuzino, National Medical-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Marioara Avram
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania
- DDS Diagnostic SRL, 7 Vulcan Judetu Street, 030423 Bucharest, Romania
| | - Bianca Tincu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ina Turcan
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
26
|
Wu K, Luo H, Yuan Z, Wang Y, Qin X, He J. Clinical evaluation of fenestration decompression combined with secondary curettage for ameloblastoma of the jaw: retrospective radiographic analysis. BMC Oral Health 2022; 22:443. [PMID: 36242034 PMCID: PMC9563122 DOI: 10.1186/s12903-022-02474-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Ameloblastoma is a benign odontogenic epithelial tumor with local infiltration and a high recurrence rate that occurs most frequently in the jawbone. The aim of this study was to investigate the outcomes of fenestration decompression combined with secondary curettage (FDSC) in the surgical treatment of jaw ameloblastoma, and clarify the possibility of FDSC to become an appropriate therapeutic method for ameloblastoma with large lesion.
Methods A retrospective analysis was carried out in 145 patients diagnosed with multicystic ameloblastoma (MA) and 88 patients with unicystic ameloblastoma (UA). These patients were divided into two groups based on the therapeutic regimen: the FDSC group and the local curettage (LC) group. Panoramic radiography was taken 2 years after curettage to evaluate the change in lesion area in each case, and the therapeutic effects of different treatment methods were further assessed by the chi square test. Results For MA, the effective rate of cystic cavity area reduction in the FDSC group (71.19%) was higher than that in the LC group (30.23%) (P < 0.001). For UA patients, the effective rate of lesion area reduction after FDSC was 93.02%, which was higher than that after LC (53.33%) (P < 0.001). Moreover, the recurrence rate of the FDSC group in the MA was 30.51%, which was significantly different from that of the LC group (P < 0.001). Regarding UA, the recurrence rates were 13.95% and 28.89%, after FDSC and LC, respectively, with no significant differences between the two groups (P > 0.05). Conclusions FDSC exhibits a much better curative effect than LC in both MA and UA, whereas the recurrence rate of these two therapeutic strategies did not significantly differ in UA. The above data demonstrated that FDSC may serve as a routine, safe, effective and appropriate surgical treatment plan for MA or UA patients with large lesions.
Collapse
Affiliation(s)
- Kailiu Wu
- Department of Oral and Maxillofacial-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Hao Luo
- Department of Stomatology, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, People's Republic of China
| | - Zhuang Yuan
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Yanan Wang
- Department of Oral and Maxillofacial-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China. .,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China.
| | - Jie He
- Department of Oral and Maxillofacial-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China. .,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
27
|
Musso N, Romano A, Bonacci PG, Scandura G, Pandino C, Camarda M, Russo GI, Di Raimondo F, Cacciola E, Cacciola R. Label-Free Enrichment of Circulating Tumor Plasma Cells: Future Potential Applications of Dielectrophoresis in Multiple Myeloma. Int J Mol Sci 2022; 23:ijms231912052. [PMID: 36233350 PMCID: PMC9569623 DOI: 10.3390/ijms231912052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022] Open
Abstract
In multiple myeloma (MM), circulating tumor plasma cells (CTPCs) are an emerging prognostic factor, offering a promising and minimally invasive means for longitudinal patient monitoring. Recent advances highlight the complex biology of plasma cell trafficking, highlighting the phenotypic and genetic signatures of intra- and extra-medullary MM onset, making CTPC enumeration and characterization a new frontier of precision medicine for MM patients, requiring novel technological platforms for their standardized and harmonized detection. Dielectrophoresis (DEP) is an emerging label-free cell manipulation technique to separate cancer cells from healthy cells in peripheral blood samples, based on phenotype and membrane capacitance that could be successfully tested to enumerate and isolate CTPCs. Herein, we summarize preclinical data on DEP development for CTPC detection, as well as their clinical and research potential.
Collapse
Affiliation(s)
- Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
- StLab SRL, 95126 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Surgical Medical Specialties, University of Catania, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-378-2971
| | - Paolo Giuseppe Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Surgical Medical Specialties, University of Catania, 95125 Catania, Italy
| | - Clarissa Pandino
- Department of General Surgery and Surgical Medical Specialties, University of Catania, 95125 Catania, Italy
| | | | - Giorgio Ivan Russo
- Urology Section, University of Catania, Via S. Sofia 78, 95125 Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Surgical Medical Specialties, University of Catania, 95125 Catania, Italy
| | - Emma Cacciola
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
- Hemostasis/Hematology Unit, A.O.U. Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy
| | - Rossella Cacciola
- Hemostasis/Hematology Unit, A.O.U. Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
28
|
Genomic Landscape Alterations in Primary Tumor and Matched Lymph Node Metastasis in Hormone-Naïve Prostate Cancer Patients. Cancers (Basel) 2022; 14:cancers14174212. [PMID: 36077746 PMCID: PMC9454441 DOI: 10.3390/cancers14174212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Prostate cancer (PCa) is a disease with a wide range of clinical manifestations. Up to the present date, the genetic understanding of patients with favorable or unfavorable prognosis is gaining interest for giving the appropriate tailored treatment. We aimed to investigate genetic changes associated with lymph node metastasis in a cohort of hormone-naïve Pca patients. Methods: We retrospectively analyzed data from 470 patients who underwent surgery for PCa between 2010 and 2020 at the Department of Urology, University of Catania. Inclusion criteria were patients with lymph node metastasis and patients with PCa with extra capsular extension (pT3) and negative lymph node metastasis. The final cohort consisted of 17 different patients (11 PCa with lymph node metastasis and 6 PCa without lymph node metastasis). Through the cBioPortal online tool, we analyzed gene alterations and their correlations with clinical factors. Results: A total of 688 intronic, synonym and nonsynonym mutations were sequenced. The gene with the most sequenced mutations was ERBB4 (83 mutations, 12% of 688 total), while the ones with the lower percentage of mutations were AKT1, FGFR2 and MLH1 (1 mutation alone, 0.14%). Conclusion: In the present study we found mostly concordance concerning the ERBB4 mutation between both primary PCa samples and matched lymph node metastasis, underlining that the identification of alterations in the primary tumor is extremely important for cancer prognosis prediction.
Collapse
|
29
|
Szymborski TR, Czaplicka M, Nowicka AB, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Dielectrophoresis-Based SERS Sensors for the Detection of Cancer Cells in Microfluidic Chips. BIOSENSORS 2022; 12:681. [PMID: 36140065 PMCID: PMC9496591 DOI: 10.3390/bios12090681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The detection of freely circulating cancer cells (CTCs) is one of the greatest challenges of modern medical diagnostics. For several years, there has been increased attention on the use of surface-enhanced Raman spectroscopy (SERS) for the detection of CTCs. SERS is a non-destructive, accurate and precise technique, and the use of special SERS platforms even enables the amplification of weak signals from biological objects. In the current study, we demonstrate the unique arrangement of the SERS technique combined with the deposition of CTCs cells on the surface of the SERS platform via a dielectrophoretic effect. The appropriate frequencies of an alternating electric field and a selected shape of the electric field can result in the efficient deposition of CTCs on the SERS platform. The geometry of the microfluidic chip, the type of the cancer cells and the positive dielectrophoretic phenomenon resulted in the trapping of CTCs on the surface of the SERS platform. We presented results for two type of breast cancer cells, MCF-7 and MDA-MB-231, deposited from the 0.1 PBS solution. The limit of detection (LOD) is 20 cells/mL, which reflects the clinical potential and usefulness of the developed approach. We also provide a proof-of-concept for these CTCs deposited on the SERS platform from blood plasma.
Collapse
Affiliation(s)
- Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ariadna B. Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
30
|
Hua Y, Dong J, Hong J, Wang B, Yan Y, Li Z. Clinical applications of circulating tumor cells in hepatocellular carcinoma. Front Oncol 2022; 12:968591. [PMID: 36091119 PMCID: PMC9448983 DOI: 10.3389/fonc.2022.968591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor and ranked as the fourth cause of cancer-related mortality. The poor clinical prognosis is due to an advanced stage and resistance to systemic treatment. There are no obvious clinical symptoms in the early stage and the early diagnosis rate remains low. Novel effective biomarkers are important for early diagnosis and tumor surveillance to improve the survival of HCC patients. Circulating tumor cells (CTCs) are cancer cells shed from primary or metastatic tumor and extravasate into the blood system. The number of CTCs is closely related to the metastasis of various solid tumors. CTCs escape from blood vessels and settle in target organs, then form micro-metastasis. Epithelial-mesenchymal transformation (EMT) plays a crucial role in distant metastasis, which confers strong invasiveness to CTCs. The fact that CTCs can provide complete cellular biological information, which allows CTCs to be one of the most promising liquid biopsy targets. Recent studies have shown that CTCs are good candidates for early diagnosis, prognosis evaluation of metastasis or recurrence, and even a potential therapeutic target in patients with HCC. It is a new indicator for clinical application in the future. In this review, we introduce the enrichment methods and mechanisms of CTCs, and focus on clinical application in patients with HCC.
Collapse
Affiliation(s)
- Yinggang Hua
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jingqing Dong
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jinsong Hong
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Zhiming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Nasir NSA, Deivasigamani R, Wee MFMR, Hamzah AA, Zaid MHM, Rahim MKA, Kayani AA, Abdulhameed A, Buyong MR. Protein Albumin Manipulation and Electrical Quantification of Molecular Dielectrophoresis Responses for Biomedical Applications. MICROMACHINES 2022; 13:mi13081308. [PMID: 36014230 PMCID: PMC9415755 DOI: 10.3390/mi13081308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 05/17/2023]
Abstract
Research relating to dielectrophoresis (DEP) has been progressing rapidly through time as it is a strong and controllable technique for manipulation, separation, preconcentration, and partitioning of protein. Extensive studies have been carried out on protein DEP, especially on Bovine Serum Albumin (BSA). However, these studies involve the usage of dye and fluorescent probes to observe DEP responses as the physical properties of protein albumin molecular structure are translucent. The use of dye and the fluorescent probe could later affect the protein's physiology. In this article, we review three methods of electrical quantification of DEP responses: electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and capacitance measurement for protein BSA DEP manipulation. The correlation of these methods with DEP responses is further discussed. Based on the observations on capacitance measurement, it can be deduced that the electrical quantifying method is reliable for identifying DEP responses. Further, the possibility of manipulating the protein and electrically quantifying DEP responses while retaining the original physiology of the protein and without the usage of dye or fluorescent probe is discussed.
Collapse
Affiliation(s)
- Nur Shahira Abdul Nasir
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Revathy Deivasigamani
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | | | - Aminuddin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Abdullah Abdulhameed
- Department of Electronics & Communication Engineering, Faculty of Engineering & Petroleum, Hadhramout University, Al-Mukalla 50512, Hadhramout, Yemen
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: ; Tel.: +60-12-385-2713
| |
Collapse
|
32
|
Li D, Li N, Ding Y. Epithelial‑to‑mesenchymal transition of circulating tumor cells and CD133 expression on predicting prognosis of thyroid cancer patients. Mol Clin Oncol 2022; 17:141. [DOI: 10.3892/mco.2022.2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/21/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Deyu Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Na Li
- Operating Room, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ying Ding
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
33
|
Fahmy O, Ahmed OAA, Khairul-Asri MG, Alhakamy NA, Alharbi WS, Fahmy UA, El-Moselhy MA, Fresta CG, Caruso G, Caraci F. Adverse Events and Tolerability of Combined Durvalumab and Tremelimumab versus Durvalumab Alone in Solid Cancers: A Systematic Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10051101. [PMID: 35625837 PMCID: PMC9138649 DOI: 10.3390/biomedicines10051101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, the combination of durvalumab and tremelimumab, two immune checkpoint inhibitors, for the treatment of different types of cancers has been considered; however, its overall effects, including its safety, are still unclear and need to be further investigated. Objectives: The aim of the present systematic review and meta-analysis was to investigate the safety and tolerability of this combination of drugs. Methods: A systematic review of the literature, based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was conducted by employing online electronic databases and the American Society of Clinical Oncology (ASCO) Meeting Library. The selection of eligible publications was made following a staged screening and selection process. The software RevMan 5.4 was used to run the quantitative analysis and forest plots, while the Cochrane tool was employed for risk of bias assessment. Results: From the retrieved 157 results, 9 randomized controlled trials involving 3060 patients were included. By comparing the combination of durvalumab and tremelimumab vs. durvalumab monotherapy, it was observed that: adverse events (AEs) ≥ Grade 3 incidence was 32.6% (536/1646) vs. 23.8% (336/1414) (Z = 2.80; p = 0.005; risk ratio (RR) = 1.44), reduced appetite incidence was 10.8% (154/1427) vs. 8.3% (108/1305) (Z = 2.26; p = 0.02; RR = 1.31), diarrhea was reported in 15.6% (229/1473) vs. 8.1% (110/1352) (Z = 5.90; p < 0.00001; RR = 1.91), rash incidence was equal to 11.1% (160/1441) vs. 6.5% (86/1320) (Z = 4.35; p <0.0001; RR = 1.75), pruritis was 13.6% (201/1473) vs. 7.7% (104/1352) (Z = 5.35; p < 0.00001; RR = 1.83), fever was 10.5% (42/399) vs. 6.6% (22/330) (Z = 2.27; p = 0.02; RR = 1.77), discontinuation rate was 18% (91/504) vs. 3% (36/434) (Z = 4.78; p < 0.00001; RR = 2.41), and death rate was 2.6% (13/504) vs. 0.7% (3/434) (Z = 1.90; p = 0.06; RR = 2.77). Conclusions: It was observed that the combined (durvalumab and tremelimumab) vs. monotherapy (durvalumab) is associated with a higher risk of treatment discontinuation, mortality, fever, diarrhea, rash, pruritis, and reduced appetite. This information is relevant and should be disclosed, especially to patients that are currently enrolled in clinical trials considering this combined therapy.
Collapse
Affiliation(s)
- Omar Fahmy
- Department of Urology, Universiti Putra Malaysia, Selangor 43400, Malaysia; (O.F.); (M.G.K.-A.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (N.A.A.); (W.S.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Ghani Khairul-Asri
- Department of Urology, Universiti Putra Malaysia, Selangor 43400, Malaysia; (O.F.); (M.G.K.-A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (N.A.A.); (W.S.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (N.A.A.); (W.S.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.A.A.A.); (N.A.A.); (W.S.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. El-Moselhy
- Clinical Pharmacy and Pharmacology Department, Ibn Sina National College for Medical Studies, Jeddah 21589, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Claudia G. Fresta
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (C.G.F.); (F.C.)
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (C.G.F.); (F.C.)
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-095-7385-036
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (C.G.F.); (F.C.)
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
34
|
Liquid Biopsy and Dielectrophoretic Analysis—Complementary Methods in Skin Cancer Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence and prevalence of skin cancers is currently increasing worldwide, with early detection, adequate treatment, and prevention of recurrences being topics of great interest for researchers nowadays. Although tumor biopsy remains the gold standard of diagnosis, this technique cannot be performed in a significant proportion of cases, so that the use of alternative methods with high sensitivity and specificity is becoming increasingly desirable. In this context, liquid biopsy appears to be a feasible solution for the study of cellular and molecular markers relevant to different types of skin cancers. Circulating tumor cells are just one of the components of interest obtained from performing liquid biopsy, and their study by complementary methods, such as dielectrophoresis, could bring additional benefits in terms of characterizing skin tumors and subsequently applying personalized therapy. One purpose of this review is to demonstrate the utility of liquid biopsy primarily in monitoring the most common types of skin tumors: basal cell carcinoma, squamous cell carcinoma, and malign melanoma. In addition, the originality of the article is based on the detailed presentation of the dielectrophoretic analysis method of the most important elements obtained from liquid biopsy, with direct impact on the clinical and therapeutic approach of skin tumors.
Collapse
|
35
|
Forte G, Ventimiglia G, Pesaturo M, Petralia S. A highly sensitive PNA-microarray system for miRNA122 recognition. Biotechnol J 2022; 17:e2100587. [PMID: 35225426 DOI: 10.1002/biot.202100587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Abstract
Surface chemistry is a fundamental aspect of the development of the sensitive biosensor based on microarray technology. Here we described an advanced PNA-microarray system for the detection of miRNA, composed by a multilayered Si/Al/Agarose component. A straightforward optical signal enhancement is achieved thanks to a combination of the Al film mirror effect and the positive interference for the emission wavelength of the Cy5 fluorescent label tuned by the agarose film. The PNA-microarray was investigated for the detection of miRNA_122, resulting in a sensitivity of about 1.75 μM-1 and Limit of Detection in the range of 0.043 nM as a function of the capture probe sequence. The contribution, in terms of H-bonds amounts at 298 and 333 K, of the agarose coating to the dsPNA-RNA interactions was demonstrated by Molecular Dynamic simulations. These results pave the way for advanced sensing strategies suitable for the environmental monitoring and the public safety. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Giuseppe Forte
- Department of Drug Science and Health, University of Catania, via S. Sofia 64, 95125, Catania, Italy
| | - Giorgio Ventimiglia
- EM Microelectronic, Rue de Sors 3, 2074, Marin (Suisse), Marin-Epagnier, Switzerland
| | | | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, via S. Sofia 64, 95125, Catania, Italy
| |
Collapse
|