1
|
Kotch C, de Blank P, Gutmann DH, Fisher MJ. Low-grade glioma in children with neurofibromatosis type 1: surveillance, treatment indications, management, and future directions. Childs Nerv Syst 2024; 40:3241-3250. [PMID: 38704493 DOI: 10.1007/s00381-024-06430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome characterized by the development of both central and peripheral nervous system tumors. Low-grade glioma (LGG) is the most prevalent central nervous system tumor occurring in children with NF1, arising most frequently within the optic pathway, followed by the brainstem. Historically, treatment of NF1-LGG has been limited to conventional cytotoxic chemotherapy and surgery. Despite treatment with chemotherapy, a subset of children with NF1-LGG fail initial therapy, have a continued decline in function, or recur. The recent development of several preclinical models has allowed for the identification of novel, molecularly targeted therapies. At present, exploration of these novel precision-based therapies is ongoing in the preclinical setting and through larger, collaborative clinical trials. Herein, we review the approach to surveillance and management of NF1-LGG in children and discuss upcoming novel therapies and treatment protocols.
Collapse
Affiliation(s)
- Chelsea Kotch
- Division of Oncology, Children's Hospital of Philadelphia, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Peter de Blank
- Division of Oncology, University of Cincinnati Medical Center and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David H Gutmann
- Division of Neurology, Washington University of St. Louis, St. Louis, MO, USA
| | - Michael J Fisher
- Division of Oncology, Children's Hospital of Philadelphia, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Shin HJ, Costello F. Imaging the optic nerve with optical coherence tomography. Eye (Lond) 2024; 38:2365-2379. [PMID: 38961147 PMCID: PMC11306400 DOI: 10.1038/s41433-024-03165-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technology, which may be used to generate in vivo quantitative and qualitative measures of retinal structure. In terms of quantitative metrics, peripapillary retinal nerve fiber layer (pRNFL) thickness provides an indirect evaluation of axonal integrity within the optic nerve. Ganglion layer measures derived from macular scans indirectly reflect retinal ganglion cell status. Notably, ganglion layer indices are platform dependent and may include macular ganglion cell inner plexiform layer (mGCIPL), ganglion cell layer (GCL), and ganglion cell complex (GCC) analyses of thickness or volume. Interpreted together, pRNFL thickness and ganglion layer values can be used to diagnose optic neuropathies, monitor disease progression, and gauge response to therapeutic interventions for neuro-ophthalmic conditions. Qualitative assessments of the optic nerve head, using cross-sectional transverse axial, en face, and circular OCT imaging, may help distinguish papilledema from pseudopapilloedema, and identify outer retinal pathology. Innovations in OCT protocols and approaches including enhanced depth imaging (EDI), swept source (SS) techniques, and angiography (OCTA) may offer future insights regarding the potential pathogenesis of different optic neuropathies. Finally, recent developments in artificial intelligence (AI) utilizing OCT images may overcome longstanding challenges, which have plagued non-vision specialists who often struggle to perform reliable ophthalmoscopy. In this review, we aim to discuss the benefits and pitfalls of OCT, consider the practical applications of this technology in the assessment of optic neuropathies, and highlight scientific discoveries in the realm of optic nerve imaging that will ultimately change how neuro-ophthalmologists care for patients.
Collapse
Affiliation(s)
- Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea
- Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
- Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea
| | - Fiona Costello
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Arnljots U, Nilsson M, Bolzani R, Benassi M, Sandvik U, Munoz DM, Blomgren K, Hellgren K. Optical coherence tomography of the macular ganglion cell layer in children with neurofibromatosis type 1 is a useful tool in the assessment for optic pathway gliomas. PLoS One 2024; 19:e0305548. [PMID: 38990917 PMCID: PMC11239031 DOI: 10.1371/journal.pone.0305548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Optic pathway glioma (OPG) is a feared complication to neurofibromatosis type 1 (NF1) since it can cause visual impairment in young children. The main goal of screening is to detect symptomatic OPGs that require treatment. Optical coherence tomography (OCT) has been suggested as a tool for detection of neuro-retinal damage. AIMS To investigate whether the ganglion cell layer assessed by OCT is a reliable measure to identify and detect relapses of symptomatic OPGs in children with NF1. METHODS Children (3-6 years) with NF1, with and without known OPG and children with sporadic OPG (S-OPG) resident in the Stockholm area, were invited and followed in a prospective study during a three-year period. Brain magnetic resonance tomography (MRI) had been performed in children with symptoms of OPG. Outcome measures were VA in logMAR, visual field index (VFI), average thicknesses of the ganglion cell-inner plexiform layer (GC-IPL), and peripapillary retinal nerve fiber layer (pRNFL). RESULTS There were 25 children with MRI-verified OPG and 52 with NF1 without symptomatic OPG. Eyes from NF1 patients without symptoms of OPG showed significantly better results in all four analyzed parameters compared to eyes with NF1-associated OPG. Mean GC-IPL measurements seemed stable and reliable, significantly correlated to pRNFL (correlation coefficient (r) = 0.662, confidence interval (CI) = .507 to .773 p<0.001), VA (r = -0.661, CI = -7.45 to -.551, p<0.001) and VFI (r = 0.644, CI = .452 to .774, p<0.001). GC-IPL measurements were easy to obtain and acquired at considerably younger age than pRNFL (5.6±1.5 vs 6.8±1.3; p<0.001). CONCLUSIONS The mean GC-IPL thickness could distinguish well between eyes with OPG and eyes without symptomatic OPG in children with NF1. As thinning of GC-IPL assessed with OCT could indicate underlying OPG, it should be included in the screening protocol of children with questionable VA measurements and in particular in children with NF1.
Collapse
Affiliation(s)
- Urszula Arnljots
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- St Erik Eye Hospital, Stockholm, Sweden
| | - Maria Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Bolzani
- Department of Psychology, University of Bologna, Bologna, Italy
| | | | - Ulrika Sandvik
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Daniel Martin Munoz
- Department of Neuroradiology and Pediatric Radiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Klas Blomgren
- Pediatric Oncology, Astrid Lindgren Children’s Hospital Karolinska University Hospital, Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Hellgren
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
El-Hajj VG, Singh A, Norin C, Edström E, Bohman E, Elmi-Terander A. Conservative or surgical management of orbital schwannomas: a population-based case series. Acta Neurochir (Wien) 2024; 166:9. [PMID: 38217694 PMCID: PMC10787905 DOI: 10.1007/s00701-024-05899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/10/2023] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Orbital schwannomas (OS) are rare occurrences with no more than 500 cases reported in the literature. The tumor's potential to compromise the delicate neuro-ophthalmic structures within the orbit prompts surgical removal. Tumor removal is performed by ophthalmologists, often requiring a multidisciplinary surgical approach. The literature contains a very limited number of cases managed non-surgically. However, the inherent risks of orbital surgery warrant a comparison of the outcomes of conservative and surgical management strategies. AIMS To review the national Swedish experience with the management of orbital schwannomas. METHODS The study center is the primary Swedish referral center for the multidisciplinary management of orbital tumors, including schwannomas. During the period of 2005 to 2021, 16 patients with an OS diagnosis were managed at the center. RESULTS Four patients initially underwent surgery where gross total resection (GTR) was achieved in three (75%) and subtotal resection (STR) in one (25%) case. The remaining 12 patients, who had a low risk of neuro-ophthalmic impairment, were managed conservatively with radiological and clinical examinations at regular intervals. After an average follow-up of 17 months, surgery was performed in three of these cases (25%). No recurrences or tumor growths were detected on radiological follow-ups (mean 50 months), and all patients experienced postoperative improvement at clinical follow-up (mean 65 months). The remainder of the conservatively treated patients (n=9) experienced no clinical progression (mean 30 months). A slight radiological tumor progression was detected in one patient after 17 months. CONCLUSION There were no differences in long-term outcome between patients who had been managed with early surgery and those operated later after an initially conservative management. Conservatively treated patients had minimal to no symptoms and remained clinically stable throughout the follow-up period. Based on these findings, conservative management may successfully be adopted in cases with mild symptoms, no signs of compressive optic neuropathy and low risk of neuro-ophthalmic impairment. Conversion to surgical management is indicated upon clinical deterioration or tumor growth. Based on the findings of this study a decision tree for the management of orbital schwannomas is suggested.
Collapse
Affiliation(s)
| | - Aman Singh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Norin
- Division of Ophthalmology and Vision, St. Erik Eye Hospital, Stockholm, Sweden
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, 194 02 Upplands-Väsby, Box 2074, Stockholm, Sweden
| | - Elin Bohman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Ophthalmology and Vision, St. Erik Eye Hospital, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Capio Spine Center Stockholm, Löwenströmska Hospital, 194 02 Upplands-Väsby, Box 2074, Stockholm, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Irshad K, Huang YK, Rodriguez P, Lo J, Aghoghovwia BE, Pan Y, Chang KC. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sci 2023; 13:1424. [PMID: 37891793 PMCID: PMC10605541 DOI: 10.3390/brainsci13101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Benjamin E. Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|