1
|
Dioguardi M, Musella G, Bizzoca ME, Sovereto D, Guerra C, Laterza P, Martella A, Lo Muzio L, Di Domenico M, Cantore S, Ballini A. The Prognostic Role of miR-375 in Head and Neck Squamous Cell Carcinoma: A Systematic Review, Meta-Analysis, and Trial Sequential Analysis. Int J Mol Sci 2025; 26:2183. [PMID: 40076805 PMCID: PMC11900050 DOI: 10.3390/ijms26052183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous group of malignancies with poor survival outcomes, particularly in advanced stages. Identifying prognostic biomarkers could help improve patient management. miR-375, a small non-coding RNA, has been shown to influence tumor growth and immune responses, making it a candidate biomarker. This study aims to evaluate the role of miR-375 expression in predicting survival outcomes in HNSCC patients. A systematic review and meta-analysis were conducted according to PRISMA guidelines, incorporating data from six studies and the TGCA cohort, encompassing 452 patients. Fixed-effects models were applied to calculate aggregated hazard ratios (HRs) for overall survival (OS). Kaplan-Meier curves were analyzed using the Tierney method, and Trial Sequential Analysis (TSA) was performed to assess statistical power. Low miR-375 expression was associated with poorer OS, with an aggregated HR of 1.23 (95% CI: 1.10-1.37). Subgroup analysis showed consistent trends across oral and laryngeal squamous cell carcinoma. Sensitivity analysis confirmed these findings. TSA revealed that although the number of patients was sufficient, statistical power was insufficient to confirm a predefined risk reduction ratio (RRR) of 49%. Data from the TGCA cohort supported the meta-analysis findings, with an HR for OS of 1.32 (95% CI: 0.96-1.8). Low miR-375 expression is associated with worse survival outcomes in HNSCC patients, indicating its potential as a prognostic biomarker and therapeutic target. However, the retrospective nature of the included studies underscores the need for prospective research to validate these findings.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| | - Gennaro Musella
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| | - Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| | - Ciro Guerra
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| | - Pietro Laterza
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| | - Angelo Martella
- DataLab, Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy;
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio, 7, 80138 Naples, Italy;
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio, 7, 80138 Naples, Italy;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (M.D.); (G.M.); (M.E.B.); (D.S.); (C.G.); (P.L.); (L.L.M.); (A.B.)
| |
Collapse
|
2
|
Siddiqui AJ, Adnan M, Saxena J, Alam MJ, Abdelgadir A, Badraoui R, Singh R. Therapeutic Potential of Plant- and Marine-Derived Bioactive Compounds in Prostate Cancer: Mechanistic Insights and Translational Applications. Pharmaceuticals (Basel) 2025; 18:286. [PMID: 40143065 PMCID: PMC11946378 DOI: 10.3390/ph18030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
It is widely recognized that prostate cancer is a multifaceted illness that is the second most common cause of cancer-related fatalities among males. Natural sources from both plants and marine organisms have long been used in treating various diseases and in the discovery of new pharmaceutical compounds. Medicinal plants, in particular, provide bioactive substances like alkaloids, phenolic compounds, terpenes, and steroids. In addition, marine natural products play a crucial role in the search for novel cancer treatments. A substantial number of anticancer drugs have been derived from natural sources, including plants, marine organisms, and microorganisms. In fact, over the past 60 years, 80% of new chemical entities have originated from natural sources, which are generally considered safer than synthetic compounds. This review seeks to emphasize the role of phytochemical compounds derived from both plant and marine sources in prostate cancer, highlighting their potential therapeutic impact. It is also intended to support global researchers working on the identification of natural-based treatments for prostate cancer.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| |
Collapse
|
3
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
4
|
Auti A, Tathode M, Marino MM, Vitiello A, Ballini A, Miele F, Mazzone V, Ambrosino A, Boccellino M. Nature's weapons: Bioactive compounds as anti-cancer agents. AIMS Public Health 2024; 11:747-772. [PMID: 39416904 PMCID: PMC11474324 DOI: 10.3934/publichealth.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer represents a major global health burden, prompting continuous research for effective therapeutic strategies. Natural compounds derived from plants have emerged as potential strategies for preventing cancer and treatment because of their inherent pharmacological properties. This comprehensive review aimed to evaluate the therapeutic potential of five key natural compounds: apigenin, quercetin, piperine, curcumin, and resveratrol in cancer prevention and therapy. By examining their molecular mechanisms and preclinical evidence, this review seeks to elucidate their role as potential adjuvants or stand-alone therapies in cancer management. The exploration of natural compounds as cancer therapeutics offers several advantages, including low toxicity, wide availability, and compatibility with conventional chemotherapeutic agents. We highlighted the current understanding of their anticancer mechanisms and clinical applications for advancing personalized cancer care to improve patient outcomes. We discussed the empirical findings from in vitro, in vivo, and clinical studies reporting biological activity and therapeutic efficacy in antioxidant, immunomodulatory, anti-carcinogenic, and chemo-sensitizing modes. Innovative delivery systems and personalized treatment approaches may further enhance their bioavailability and therapeutic utility in a synergistic approach with chemo- and radiotherapeutic disease management. This review underscores the importance of natural compounds in cancer prevention and treatment, promoting a multidisciplinary approach to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Amogh Auti
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Madhura Tathode
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, 00144 Rome, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122, Foggia, Italy
| | - Francesco Miele
- General Surgery Unit, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Valeria Mazzone
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessia Ambrosino
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
5
|
Di Zazzo E, Barone B, Crocetto F. "Adiponcosis interplay: adipose tissue, microenvironment and prostate cancer". J Basic Clin Physiol Pharmacol 2024; 35:101-103. [PMID: 38797918 DOI: 10.1515/jbcpp-2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Erika Di Zazzo
- 2018960 Department of Medicine and Health Sciences "V. Tiberio", University of Molise , Campobasso, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
7
|
David IG, Iorgulescu EE, Popa DE, Buleandra M, Cheregi MC, Noor H. Curcumin Electrochemistry-Antioxidant Activity Assessment, Voltammetric Behavior and Quantitative Determination, Applications as Electrode Modifier. Antioxidants (Basel) 2023; 12:1908. [PMID: 38001760 PMCID: PMC10669510 DOI: 10.3390/antiox12111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Curcumin (CU) is a polyphenolic compound extracted from turmeric, a well-known dietary spice. Since it has been shown that CU exerts beneficial effects on human health, interest has increased in its use but also in its analysis in different matrices. CU has an antioxidant character and is electroactive due to the presence of phenolic groups in its molecule. This paper reviews the data reported in the literature regarding the use of electrochemical techniques for the assessment of CU antioxidant activity and the investigation of the voltammetric behavior at different electrodes of free or loaded CU on various carriers. The performance characteristics and the analytical applications of the electrochemical methods developed for CU analysis are compared and critically discussed. Examples of voltammetric investigations of CU interaction with different metallic ions or of CU or CU complexes with DNA as well as the CU applications as electrode modifiers for the enhanced detection of various chemical species are also shown.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Carmen Cheregi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania;
- Medlife-Polisano Hospital, Strada Izvorului 1A, 550172 Sibiu, Romania
| |
Collapse
|
8
|
Jameel M, Fatma H, Nadtochii LA, Siddique HR. Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules. Life (Basel) 2023; 13:1976. [PMID: 37895357 PMCID: PMC10608662 DOI: 10.3390/life13101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (CaP) is one of the most prevalent male malignancies, accounting for a considerable number of annual mortalities. However, the prompt identification of early-stage CaP often faces delays due to diverse factors, including socioeconomic inequalities. The androgen receptor (AR), in conjunction with various other signaling pathways, exerts a central influence on the genesis, progression, and metastasis of CaP, with androgen deprivation therapy (ADT) serving as the primary therapeutic strategy. Therapeutic modalities encompassing surgery, chemotherapy, hormonal intervention, and radiotherapy have been formulated for addressing early and metastatic CaP. Nonetheless, the heterogeneous tumor microenvironment frequently triggers the activation of signaling pathways, culminating in the emergence of chemoresistance, an aspect to which cancer stem cells (CSCs) notably contribute. Phytochemicals emerge as reservoirs of bioactive agents conferring manifold advantages against human morbidity. Several of these phytochemicals demonstrate potential chemoprotective and chemosensitizing properties against CaP, with selectivity exhibited towards malignant cells while sparing their normal counterparts. In this context, the present review aims to elucidate the intricate molecular underpinnings associated with metastatic CaP development and the acquisition of chemoresistance. Moreover, the contributions of phytochemicals to ameliorating CaP initiation, progression, and chemoresistance are also discussed.
Collapse
Affiliation(s)
- Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Liudmila A. Nadtochii
- Department of Microbiology, Saint Petersburg State Chemical & Pharmaceutical University, 197022 Saint Petersburg, Russia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| |
Collapse
|
9
|
Pellegrino M, Bevacqua E, Frattaruolo L, Cappello AR, Aquaro S, Tucci P. Enhancing the Anticancer and Anti-Inflammatory Properties of Curcumin in Combination with Quercetin, for the Prevention and Treatment of Prostate Cancer. Biomedicines 2023; 11:2023. [PMID: 37509660 PMCID: PMC10377667 DOI: 10.3390/biomedicines11072023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is the second most common cancer in men. Although epidemiologic studies show that a higher intake of polyphenols, curcumin (CUR), and quercetin (QRT), in particular, result in lower prostate cancer risk, the chemopreventive mechanisms underlying the effects of CUR and QRT have not been fully understood yet, and most investigations were conducted with individual compounds. Here, we investigated the anticancer and anti-inflammatory effects of CUR in combination with QRT, respectively, in a human prostate cancer cell line, PC-3, and in LPS-stimulated RAW 264.7 cells, and found that their combination significantly inhibited proliferation and arrested the cell cycle, inducing apoptosis, so exhibiting synergic activities stronger than single drug use. Moreover, via their antioxidant effects, the combination of CUR and QRT modulated several inflammation-mediated signaling pathways (ROS, nitric oxide, and pro-inflammatory cytokines) thus helping protect cells from undergoing molecular changes that trigger carcinogenesis. Although additional studies, including in vivo experiments and translational studies, are required, this study raises the possibility of their use as a safe, effective, and affordable therapeutic approach to prostate cancer.
Collapse
Affiliation(s)
- Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Emilia Bevacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Paola Tucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
10
|
Barone B, Mirto BF, Falcone A, Del Giudice F, Aveta A, Napolitano L, Del Biondo D, Ferro M, Busetto GM, Manfredi C, Terracciano D, Gambardella R, Pandolfo SD, Trama F, De Luca C, Martino R, Capone F, Giampaglia G, Sicignano E, Tataru OS, Lucarelli G, Crocetto F. The Efficacy of Flogofilm ® in the Treatment of Chronic Bacterial Prostatitis as an Adjuvant to Antibiotic Therapy: A Randomized Prospective Trial. J Clin Med 2023; 12:jcm12082784. [PMID: 37109121 PMCID: PMC10142953 DOI: 10.3390/jcm12082784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Bacterial prostatitis (BP) is a common prostatic infection characterized by a bimodal distribution in young and older men, with a prevalence between 5-10% among all cases of prostatitis and a high impact on quality of life. Although the management of bacterial prostatitis involves the use of appropriate spectrum antibiotics, which represent the first choice of treatment, a multimodal approach encompassing antibiotics and nutraceutical products in order to improve the efficacy of chosen antimicrobial regimen is often required. OBJECTIVE To evaluate the efficacy of Flogofilm® in association with fluoroquinolones in patients with chronic bacterial prostatitis (CBP). METHODS Patients diagnosed with prostatitis (positivity to Meares-Stamey Test and symptoms duration > 3 months) at the University of Naples "Federico II", Italy, from July 2021 to December 2021, were included in this study. All patients underwent bacterial cultures and trans-rectal ultrasounds. Patients were randomized into two groups (A and B) receiving antibiotic alone or an association of antibiotics plus Flogofilm® tablets containing Flogomicina® for one month, respectively. The NIH-CPSI and IPSS questionnaires were administered at baseline, four weeks, twelve and twenty-four weeks. RESULTS A total of 96 (Group A = 47, Group B = 49) patients concluded the study protocol. The mean age was comparable, with a mean age of 34.62 ± 9.04 years for Group A and 35.29 ± 10.32 years for Group B (p = 0.755), and IPSS at the baseline was 8.28 ± 6.33 and 9.88 ± 6.89 (p = 0.256), respectively, while NIH-CPSI at baseline was 21.70 ± 4.38 and 21.67 ± 6.06 (p = 0.959), respectively. At 1, 3 and 6 months, the IPSS score was 6.45 ± 4.8 versus 4.31 ± 4.35 (p = 0.020), 5.32 ± 4.63 versus 3.20 ± 3.05 (p = 0.042) and 4.91 ± 4.47 versus 2.63 ± 3.28 (p = 0.005) for Groups A and B, respectively. Similarly, the NIH-CPSI total score at 1, 3 and 6 months was 16.15 ± 3.31 versus 13.10 ± 5.03 (p < 0.0001), 13.47 ± 3.07 versus 9.65 ± 4.23 (p < 0.0001) and 9.83 ± 2.53 versus 5.51 ± 2.84 (p < 0.0001), respectively. CONCLUSIONS Flogofilm®, associated with fluoroquinolones, demonstrate a significant improvement in pain, urinary symptoms and quality of life in patients affected by chronic bacterial prostatitis in both IPSS and NIH-CPSI scores compared with fluoroquinolones alone.
Collapse
Affiliation(s)
- Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Benito Fabio Mirto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Alfonso Falcone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Achille Aveta
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Napolitano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Dario Del Biondo
- Department of Urology, Ospedale del Mare, ASL NA1 Centro, 80147 Naples, Italy
| | - Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Celeste Manfredi
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Trama
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Ciro De Luca
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Raffaele Martino
- Department of Urology, Ospedale del Mare, ASL NA1 Centro, 80147 Naples, Italy
| | - Federico Capone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Gaetano Giampaglia
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Enrico Sicignano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology from Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
11
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
12
|
El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, Al Jaouni SK, Salem HM, Mahmmod Y, Soliman SM, Mo’men SAA, Mosa WFA, El-Wafai NA, Abou-Aly HE, Sitohy B, Abd El-Hack ME, El-Tarabily KA, Saad AM. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9:1040259. [PMID: 36712505 PMCID: PMC9881416 DOI: 10.3389/fnut.2022.1040259] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa A. A. Mo’men
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nahed A. El-Wafai
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hamed E. Abou-Aly
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mohamed E. Abd El-Hack
- Department of Poultry Diseases, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
14
|
Hao M, Chu Y, Lei J, Yao Z, Wang P, Chen Z, Wang K, Sang X, Han X, Wang L, Cao G. Pharmacological Mechanisms and Clinical Applications of Curcumin: Update. Aging Dis 2022; 14:716-749. [PMID: 37191432 DOI: 10.14336/ad.2022.1101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Curcumin, a well-known hydrophobic polyphenol extracted from the rhizomes of turmeric (Curcuma longa L.), has attracted great interest in the last ten years due to its multiple pharmacological activities. A growing body of evidence has manifested that curcumin has extensive pharmacological activities including anti-inflammatory, anti-oxygenation, lipid regulation, antiviral, and anticancer with hypotoxicity and minor adverse reactions. However, the disadvantages of low bioavailability, short half-life in plasma, low drug concentration in blood, and poor oral absorption severely limited the clinical application of curcumin. Pharmaceutical researchers have carried out plenty of dosage form transformations to improve the druggability of curcumin and have achieved remarkable results. Therefore, the objective of this review summarizes the pharmacological research progress, problems in clinical application and the improvement methods of curcumin's druggability. By reviewing the latest research progress of curcumin, we believe that curcumin has a broad clinical application prospect for its wide range of pharmacological activities with few side effects. The deficiencies of lower bioavailability of curcumin could be improved by dosage form transformation. However, curcumin in the clinical application still requires further study regarding the underlying mechanism and clinical trial verification.
Collapse
|