1
|
Arandhara A, Bhuyan P, Das BK. Exploring lung cancer microenvironment: pathways and nanoparticle-based therapies. Discov Oncol 2025; 16:159. [PMID: 39934547 DOI: 10.1007/s12672-025-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer stands out as a significant global health burden, with staggering incidence and mortality rates primarily linked to smoking and environmental carcinogens. The tumor microenvironment (TME) emerges as a critical determinant of cancer progression and treatment outcomes, comprising a complex interplay of cells, signaling molecules, and extracellular matrix. Through a comprehensive literature review, we elucidate current research trends and therapeutic prospects, aiming to advance our understanding of TME modulation strategies and their clinical implications for lung cancer treatment. Dysregulated immune responses within the TME can facilitate tumor evasion, limiting the efficacy of immune checkpoint inhibitors (ICI). Consequently, TME modulation strategies have become potential avenues to enhance therapeutic responses. However, conventional TME-targeted therapies often face challenges. In contrast, nanoparticle (NP)-based therapies offer promising prospects for improved drug delivery and reduced toxicity, leveraging the enhanced permeability and retention (EPR) effect. Despite NP design and delivery advancements, obstacles like poor tumor cell uptake and off-target effects persist, necessitating further optimization. This review underscores the pivotal role of TME in lung cancer management, emphasizing the synergistic potential of immunotherapy and nano-therapy.
Collapse
Affiliation(s)
- Arunabh Arandhara
- Assam Pharmacy Institute, Titabar, Amgurikhat, Jorhat, Assam, 785632, India
| | - Pallabi Bhuyan
- School of Pharmacy, The Assam Kaziranga University, Koraikhowa, Jorhat, Assam, 785006, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
2
|
Haysom‐McDowell A, Paudel KR, Yeung S, Kokkinis S, El Sherkawi T, Chellappan DK, Adams J, Dua K, De Rubis G. Recent trends and therapeutic potential of phytoceutical-based nanoparticle delivery systems in mitigating non-small cell lung cancer. Mol Oncol 2025; 19:15-36. [PMID: 39592417 PMCID: PMC11705733 DOI: 10.1002/1878-0261.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer death globally, with non-small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer-associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non-small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems.
Collapse
Affiliation(s)
- Adam Haysom‐McDowell
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Keshav Raj Paudel
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
- Centre for Inflammation Centenary Institute, Faculty of Science, School of Life SciencesUniversity of Technology SydneyAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Jon Adams
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
3
|
Saqib M, Din ZS, Zafar S, Munawar N, Nawaz R, Ahmed S, Hamdard MH. Lung cancer, platinum analog-based frontline treatment and pharmacogenetic limitations. Per Med 2024; 21:385-400. [PMID: 39560009 DOI: 10.1080/17410541.2024.2391269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/08/2024] [Indexed: 11/20/2024]
Abstract
Lung cancer has the highest mortality rate among all the highly prevalent neoplasia globally. The major concern with its frontline treatment-cisplatin, is the rapid progression of chemoresistance and multi-organ-based toxicities including hearing loss and tinnitus, nephrotoxicity, hepatotoxicity and myelosuppression including anemia and neutropenia. In this review, studies concluding the association of single nucleotide polymorphisms (SNP) in disparate genes with aforementioned toxicity points are summarized to observe the pharmacogenomic pattern. Especially, SNPs in ATP7B, ERCC-1, ERCC-2, MATE-1, OCT-2, ABCB-1, ABCC-1, ABCG-2, ABCC-2, SLC22A, ERCC-5, BRCA-1, GSTM-3, GSTM-4 and GSTM-5 genes appear to be associated with the therapeutic response and/or adverse effects of cisplatin. We recommend utilizing this information to minimize the risk of treatment failure due to chemoresistance and adverse effects on other organs.
Collapse
Affiliation(s)
- Maryam Saqib
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Zari Salahud Din
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sehrish Zafar
- Combined Military Hospital College, Lahore, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | |
Collapse
|
4
|
Jadamba B, Jin Y, Lee H. Harmonising cellular conversations: decoding the vital roles of extracellular vesicles in respiratory system intercellular communications. Eur Respir Rev 2024; 33:230272. [PMID: 39537245 PMCID: PMC11558538 DOI: 10.1183/16000617.0272-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) released by various cells play crucial roles in intercellular communication within the respiratory system. This review explores the historical context and significance of research into extracellular vesicles. Categorised into exosomes (sized 30-150 nm), microvesicles (sized 50-1000 nm) and apoptotic bodies (sized 500-2000nm), based on their generation mechanisms, extracellular vesicles carry diverse cargoes of biomolecules, including proteins, lipids and nucleic acids. Respiratory ailments are the primary contributors to both mortality and morbidity across various populations globally, significantly impacting public health. Recent studies have underscored the pivotal role of extracellular vesicles, particularly their cargo content, in mediating intercellular communication between lung cells in respiratory diseases. This comprehensive review provides insights into extracellular vesicle mechanisms and emphasises their significance in major respiratory conditions, including acute lung injury, COPD, pulmonary hypertension, pulmonary fibrosis, asthma and lung cancer.
Collapse
Affiliation(s)
- Budjav Jadamba
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
5
|
Wang L, Ma Y, Han W, Yang Q, Jamil M. Whole Exome Sequencing reveals clinically important pathogenic mutations in DNA repair genes across lung cancer patients. Am J Cancer Res 2023; 13:4989-5004. [PMID: 37970346 PMCID: PMC10636674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023] Open
Abstract
Lung cancer remains a substantial health challenge, with distinct genetic factors influencing disease susceptibility and progression. This study aimed to decipher the landscape of DNA repair gene mutations in Pakistani lung cancer patients using Whole Exome Sequencing (WES) and to investigate their potential functional implications through downstream analyses. WES analysis of genomic DNA from 15 lung cancer patients identified clinically important pathogenic mutations in 6 DNA repair genes, including, BReast CAncer gene 1 (BRCA1), BReast CAncer gene 2 (BRCA2), Excision Repair Cross Complementing rodent repair deficiency, complementation group 6 (ERCC6), Checkpoint Kinase 1 (CHEK1), mutY DNA glycosylase (MUTYH), and RAD51D (RAD51 Paralog D). Kaplan-Meier (KM) analysis showed that pathogenic mutations in BRCA1, BRCA2, ERCC6, CHEK1, MUTYH, and RAD51D genes were the prognostic biomarkers of worse OS in lung cancer patients. To explore the functional impact of these mutations, we performed Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Immunohistochemistry (IHC) analyses. Our results revealed a down-regulation in the expression of the mutated genes, indicating a potential link between the identified mutations and reduced gene activity. This down-regulation could contribute to compromised DNA repair efficiency, thereby fostering genomic instability in lung cancer cells. Furthermore, targeted bisulfite sequencing analysis was employed to assess the DNA methylation status of the mutated genes. Strikingly, hypermethylation in the promoters of BRCA1, BRCA2, ERCC6, CHEK1, MUTYH, and RAD51D was observed across lung cancer samples harboring pathogenic mutations, suggesting the involvement of epigenetic mechanism underlying the altered gene expression. In conclusion, this study provides insights into the genetic landscape of DNA repair gene mutations in Pakistani lung cancer patients. The observed pathogenic mutations in BRCA1, BRCA2, ERCC6, CHEK1, MUTYH, and RAD51D, coupled with their down-regulation and hypermethylation, suggest a potential convergence of genetic and epigenetic factors driving genomic instability in lung cancer cells. These findings contribute to our understanding of lung cancer susceptibility and highlight potential avenues for targeted therapeutic interventions in Pakistani lung cancer patients.
Collapse
Affiliation(s)
- Lanlan Wang
- Department of Medicine, The First People’s Hospital of ShangqiuShangqiu 476100, Henan, China
| | - Yali Ma
- Department of Oncology, Shangqiu First People’s HospitalShangqiu 476000, Henan, China
| | - Wenjie Han
- Department of Oncology, Shangqiu First People’s HospitalShangqiu 476000, Henan, China
| | - Qiumin Yang
- Department of Oncology, Shangqiu First People’s HospitalShangqiu 476000, Henan, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| |
Collapse
|
6
|
Zhou H, Li J, Zhang Y, Chen Z, Chen Y, Ye S. Platelet-lymphocyte ratio is a prognostic marker in small cell lung cancer-A systemic review and meta-analysis. Front Oncol 2023; 12:1086742. [PMID: 36713502 PMCID: PMC9880219 DOI: 10.3389/fonc.2022.1086742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Aim The aim of this study was to evaluate the relationship between platelet-lymphocyte ratio (PLR) and prognosis in small cell lung cancer (SCLC) patients. Method A comprehensive search was carried out to collect related studies. Two independent investigators extracted the data of hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS) or progression-free survival (PFS). A random-effect model was applied to analyze the effect of different PLR levels on OS and PFS in SCLC patients. Moreover, subgroup analysis was conducted to seek out the source of heterogeneity. Results A total of 26 articles containing 5,592 SCLC patients were included for this meta-analysis. SCLC patients with a high PLR level had a shorter OS compared with patients with a low PLR level, in both univariate (HR = 1.56, 95% CI 1.28-1.90, p < 0.0001) and multivariate (HR = 1.31, 95% CI 1.08-1.59, p = 0.007) models. SCLC patients with a high PLR level had a shorter PFS compared with patients with a low PLR level, in the univariate model (HR = 1.71, 95% CI 1.35-2.16, p < 0.0001), but not in the multivariate model (HR = 1.17, 95% CI 0.95-1.45, p = 0.14). Subgroup analysis showed that a high level of PLR shortened OS in some subgroups, including the Asian subgroup, the younger subgroup, the mixed-stage subgroup, the chemotherapy-dominant subgroup, the high-cutoff-point subgroup, and the retrospective subgroup. PLR level did not affect OS in other subgroups. Conclusion PLR was a good predictor for prognosis of SCLC patients, especially in patients received chemotherapy dominant treatments and predicting OS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022383069.
Collapse
Affiliation(s)
- Hongbin Zhou
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jiuke Li
- Department of Ophthalmology, Hangzhou Aier Eye Hospital, Hangzhou, Zhejiang, China
| | - Yiting Zhang
- Department of Pulmonary and Critical Care Medicine, Xianju People’s Hospital, Taizhou, Zhejiang, China
| | - Zhewen Chen
- Center for General Practice Medicine, Department of Clinical Nutrition, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Chen
- Center for General Practice Medicine, Department of Clinical Nutrition, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Sa Ye
- Center for General Practice Medicine, Department of Clinical Nutrition, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China,*Correspondence: Sa Ye,
| |
Collapse
|
7
|
Guo SS, Wang ZG. Salvianolic acid B from Salvia miltiorrhiza bunge: A potential antitumor agent. Front Pharmacol 2022; 13:1042745. [PMID: 36386172 PMCID: PMC9640750 DOI: 10.3389/fphar.2022.1042745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is a perennial herb widely found in China since ancient times with a high economic and medicinal value. Salvianolic acid B (Sal-B) is an important natural product derived from Salvia miltiorrhiza and this review summarizes the anticancer activity of Sal-B. Sal-B inhibits tumor growth and metastasis by targeting multiple cell signaling pathways. This review aims to review experimental studies to describe the possible anticancer mechanisms of Sal-B and confirm its potential as a therapeutic drug.
Collapse
Affiliation(s)
- Sha-Sha Guo
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Guo Wang
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhen-Guo Wang,
| |
Collapse
|
8
|
Hofman P, Calin GA, Mani SA, Bontoux C, Ilié M, Wistuba II. The Third Joint Meeting on Lung Cancer of the FHU OncoAge (University Côte d'Azur, Nice, France) and the University of Texas MD Anderson Cancer Center (Houston, TX, USA). Understanding New Therapeutic Options and Promising Predictive Biomarkers for Lung Cancer Patients. Cancers (Basel) 2022; 14:4327. [PMID: 36077862 PMCID: PMC9454909 DOI: 10.3390/cancers14174327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
We are proud and happy to present this Special Issue, a follow-up to the third joint meeting on lung cancer of the FHU OncoAge (University Côte d'Azur, Nice, France) and the University of Texas MD Anderson Cancer Center (Houston, TX, USA), which was held virtually on 4 October 2021 [...].
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Biobank-Related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sandurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Biobank-Related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Biobank-Related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|