• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (21)
For: Herrero Vicent C, Tudela X, Moreno Ruiz P, Pedralva V, Jiménez Pastor A, Ahicart D, Rubio Novella S, Meneu I, Montes Albuixech Á, Santamaria MÁ, Fonfria M, Fuster-Matanzo A, Olmos Antón S, Martínez de Dueñas E. Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2022;14:cancers14143508. [PMID: 35884572 PMCID: PMC9317428 DOI: 10.3390/cancers14143508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023]  Open
Number Cited by Other Article(s)
1
Mastrantoni L, Garufi G, Giordano G, Maliziola N, Di Monte E, Arcuri G, Frescura V, Rotondi A, Orlandi A, Carbognin L, Palazzo A, Miglietta F, Pontolillo L, Fabi A, Gerratana L, Pannunzio S, Paris I, Pilotto S, Marazzi F, Franco A, Franceschini G, Dieci MV, Mazzeo R, Puglisi F, Guarneri V, Milella M, Scambia G, Giannarelli D, Tortora G, Bria E. Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy. NPJ Breast Cancer 2025;11:11. [PMID: 39910103 PMCID: PMC11799161 DOI: 10.1038/s41523-025-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025]  Open
2
Wang J, Wang L, Yang Z, Tan W, Liu Y. Application of machine learning in the analysis of multiparametric MRI data for the differentiation of treatment responses in breast cancer: retrospective study. Eur J Cancer Prev 2025;34:56-65. [PMID: 38743632 DOI: 10.1097/cej.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
3
Wang Z, Li X, Zhang H, Duan T, Zhang C, Zhao T. Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer. ULTRASONIC IMAGING 2024;46:357-366. [PMID: 39257175 DOI: 10.1177/01617346241276168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
4
Qi YJ, Su GH, You C, Zhang X, Xiao Y, Jiang YZ, Shao ZM. Radiomics in breast cancer: Current advances and future directions. Cell Rep Med 2024;5:101719. [PMID: 39293402 PMCID: PMC11528234 DOI: 10.1016/j.xcrm.2024.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024]
5
Zhang Z, Cao B, Wu J, Feng C. Development and Validation of an Interpretable Machine Learning Prediction Model for Total Pathological Complete Response after Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer: Multicenter Retrospective Analysis. J Cancer 2024;15:5058-5071. [PMID: 39132160 PMCID: PMC11310874 DOI: 10.7150/jca.97190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]  Open
6
Li X, Li C, Wang H, Jiang L, Chen M. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. PeerJ 2024;12:e17683. [PMID: 39026540 PMCID: PMC11257043 DOI: 10.7717/peerj.17683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]  Open
7
Saleh GA, Batouty NM, Gamal A, Elnakib A, Hamdy O, Sharafeldeen A, Mahmoud A, Ghazal M, Yousaf J, Alhalabi M, AbouEleneen A, Tolba AE, Elmougy S, Contractor S, El-Baz A. Impact of Imaging Biomarkers and AI on Breast Cancer Management: A Brief Review. Cancers (Basel) 2023;15:5216. [PMID: 37958390 PMCID: PMC10650187 DOI: 10.3390/cancers15215216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]  Open
8
Jiang W, Du S, Gao S, Xie L, Xie Z, Wang M, Peng C, Shi J, Zhang L. Correlation between synthetic MRI relaxometry and apparent diffusion coefficient in breast cancer subtypes with different neoadjuvant therapy response. Insights Imaging 2023;14:162. [PMID: 37775610 PMCID: PMC10541382 DOI: 10.1186/s13244-023-01492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/25/2023] [Indexed: 10/01/2023]  Open
9
Park J, Kim MJ, Yoon JH, Han K, Kim EK, Sohn JH, Lee YH, Yoo Y. Machine Learning Predicts Pathologic Complete Response to Neoadjuvant Chemotherapy for ER+HER2- Breast Cancer: Integrating Tumoral and Peritumoral MRI Radiomic Features. Diagnostics (Basel) 2023;13:3031. [PMID: 37835774 PMCID: PMC10572844 DOI: 10.3390/diagnostics13193031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]  Open
10
Hao X, Xu H, Zhao N, Yu T, Hamalainen T, Cong F. Predicting pathological complete response based on weakly and semi-supervised joint learning from breast cancer MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023;2023:1-4. [PMID: 38083773 DOI: 10.1109/embc40787.2023.10340081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA