1
|
Yin J, Pei Z, Wu C, Liu J, Huang J, Xia R, Xiang D. M2 Macrophage-Derived Exosomal circ_0088494 Inhibits Ferroptosis via Promoting H3K4me1 Modification of STEAP3 in Cutaneous Squamous Cell Carcinoma. Mol Carcinog 2025; 64:513-525. [PMID: 39692268 DOI: 10.1002/mc.23862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of cutaneous cancer globally. M2 macrophage-derived exosomes (M2 exosomes) facilitate the development of cancer. Ferroptosis, a newly uncovered form of cell death, is linked to cancer progression. The present research planned to study the function and potential mechanism of M2 exosomes on ferroptosis in cSCC. Patients with cSCC were recruited to gather adjacent noncancerous specimens and cSCC tissues. Mononuclear macrophage (THP-1) cells were differentiated into M2 macrophages before exosome extraction, and then the exosomes were added into cSCC cells (A431 and SCL-1). Erastin was applied to induce ferroptosis. Cell viability, mitochondrial superoxide, lipid-ROS, malondialdehyde (MDA), and iron level were detected to validate ferroptosis in cSCC cells. Proteins and RNAs were tested by applying western blot and RT-qPCR. The combination between molecules was validated by ChIP and RIP. Six-transmembrane epithelial antigen of the prostate 3 (STEAP3) was elevated in cSCC specimens, which correlated to reduced ferroptosis. cSCC tissues presented an increase in the number of M2 macrophages. Erastin-elicited ferroptosis was repressed by M2 macrophages, while exosome inhibitor GW4869 neutralized the outcome of M2 macrophages. Furthermore, M2 exosomes repressed ferroptosis of cSCC cells via circ_0088494, which might be related to the upregulation of STEAP3. M2 exosomes-derived circ_0088494 promoted histone 3 lysine 4 monomethylation (H3K4me1) modification of STEAP3 by recruiting histone-lysine N-methyltransferase 2D (KMT2D). The effect of circ_0088494-silenced M2 exosomes on ferroptosis was antagonized by STEAP3 overexpression. M2 exosomes-derived circ_0088494 recruited KMT2D to promote H3K4me1 modification of STEAP3, thereby inhibiting ferroptosis in cSCC. This study might provide a novel target for cSCC treatment.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Zhigang Pei
- Department of Pathology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Jie Liu
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Jianxiang Huang
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Rui Xia
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| |
Collapse
|
2
|
Conley J, Genenger B, Ashford B, Ranson M. Micro RNA Dysregulation in Keratinocyte Carcinomas: Clinical Evidence, Functional Impact, and Future Directions. Int J Mol Sci 2024; 25:8493. [PMID: 39126067 PMCID: PMC11313315 DOI: 10.3390/ijms25158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The keratinocyte carcinomas, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC), are the most common cancers in humans. Recently, an increasing body of literature has investigated the role of miRNAs in keratinocyte carcinoma pathogenesis, progression and their use as therapeutic agents and targets, or biomarkers. However, there is very little consistency in the literature regarding the identity of and/or role of individual miRNAs in cSCC (and to a lesser extent BCC) biology. miRNA analyses that combine clinical evidence with experimental elucidation of targets and functional impact provide far more compelling evidence than studies purely based on clinical findings or bioinformatic analyses. In this study, we review the clinical evidence associated with miRNA dysregulation in KCs, assessing the quality of validation evidence provided, identify gaps, and provide recommendations for future studies based on relevant studies that investigated miRNA levels in human cSCC and BCC. Furthermore, we demonstrate how miRNAs contribute to the regulation of a diverse network of cellular functions, and that large-scale changes in tumor cell biology can be attributed to miRNA dysregulation. We highlight the need for further studies investigating the role of miRNAs as communicators between different cell types in the tumor microenvironment. Finally, we explore the clinical benefits of miRNAs as biomarkers of keratinocyte carcinoma prognosis and treatment.
Collapse
Affiliation(s)
- Jessica Conley
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Benjamin Genenger
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| |
Collapse
|
3
|
Tay SH, Oh CC. Liquid Biopsies in Advanced Cutaneous Squamous Cell Carcinoma: A Systematic Review. J Invest Dermatol 2024; 144:722-726. [PMID: 37739339 DOI: 10.1016/j.jid.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Affiliation(s)
| | - Choon Chiat Oh
- Duke-NUS Medical School, Singapore, Singapore; Department of Dermatology, Singapore General Hospital, Singapore, Singapore.
| |
Collapse
|
4
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
5
|
Myo Min KK, Ffrench CB, McClure BJ, Ortiz M, Dorward EL, Samuel MS, Ebert LM, Mahoney MG, Bonder CS. Desmoglein-2 as a cancer modulator: friend or foe? Front Oncol 2023; 13:1327478. [PMID: 38188287 PMCID: PMC10766750 DOI: 10.3389/fonc.2023.1327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Charlie B. Ffrench
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emma L. Dorward
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Queen Elizabeth Hospital, SA, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Claudine S. Bonder
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Ma KSK, Tsai PF, Hsieh TYJ, Chodosh J. Ocular surface complications following biological therapy for cancer. FRONTIERS IN TOXICOLOGY 2023; 5:1137637. [PMID: 37424746 PMCID: PMC10324604 DOI: 10.3389/ftox.2023.1137637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Novel and highly effective biological agents developed to treat cancer over the past two decades have also been linked to multiple adverse outcomes, including unanticipated consequences for the cornea. This review provides an overview of adverse corneal complications of biological agents currently in use for the treatment of cancer. Epidermal growth factor receptor inhibitors and immune checkpoint inhibitors are the two classes of biological agents most frequently associated with corneal adverse events. Dry eye, Stevens-Johnson syndrome, and corneal transplant rejection have all been reported following the use of immune checkpoint inhibitors. The management of these adverse events requires close collaboration between ophthalmologists, dermatologists, and oncologists. This review focuses in depth on the epidemiology, pathophysiology, and management of ocular surface complications of biological therapies against cancer.
Collapse
Affiliation(s)
- Kevin Sheng-Kai Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ping-Feng Tsai
- Department of Ophthalmology, Tri-Service General Hospital, Taipei, Taiwan
| | - Tina Yi-Jin Hsieh
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
7
|
Li ACW, Dong C, Tay ST, Ananthakrishnan A, Ma KSK. Vedolizumab for acute gastrointestinal graft-versus-host disease: A systematic review and meta-analysis. Front Immunol 2022; 13:1025350. [PMID: 36439135 PMCID: PMC9692080 DOI: 10.3389/fimmu.2022.1025350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 04/05/2024] Open
Abstract
OBJECTIVE To determine the safety and efficacy of vedolizumab for the prophylaxis and treatment of gastrointestinal involvement of acute graft-versus-host disease (GVHD) (GI-aGVHD). METHODS Literature search within PubMed, EMBASE, Web of Science, and Cochrane Library for observational studies and clinical trials that evaluated the effect of vedolizumab on GI-aGVHD was done through 17 May 2022. A bivariate and random-effect meta-analysis derived the pooled observational percentages and pooled risk ratios (RRs) from baseline of primary endpoints including overall response, complete response, mortality, and adverse events. RESULTS There was a total of 122 participants in eight eligible studies, including one study on the prophylactic use of vedolizumab and seven studies on vedolizumab for the treatment of GI-aGVHD. Of seven studies that reported details on baseline grades of GI-aGVHD, a total of 47 patients (47.95%) were of stage 4, 31 patients (31.63%) were of stage 3, 10 patients (10.2%) were of stage 2, and 10 patients (10.2%) were of stage 1. The use of vedolizumab for the treatment of GI-aGVHD yielded a significantly improved objective response rate (ORR) at 14 days (pooled ORR = 60.53%, pooled RR = 14.14, 95% CI: 2.95-67.71), 28 days (pooled ORR = 50%, RR = 7.36, 95% CI = 2.14-25.37), and 12 months (pooled ORR = 76.92%, RR = 13.66, 95% CI = 3.5-53.35) from baseline. Likewise, the use of vedolizumab was followed by a significantly improved complete response (CR) at 12 months (pooled CR = 27.27%, RR = 5.50, 95% CI = 1.01-29.95), yet the CR at 14 days and 28 days did not reach statistical significance. Fifty-seven out of 87 (pooled overall survival, OS = 34.5%) and 46 out of 65 (pooled OS = 29.2%) patients expired at 6 and 12 months after the use of vedolizumab, respectively. Prophylactic use of vedolizumab was not associated with any specific type of reported adverse events, while patients with GI-aGVHD on vedolizumab presented with significantly increased risks of adverse events including infections (RR = 7.55) and impaired metabolism or nutritional complications (RR = 9.00). All analyses were of a low heterogeneity (all I-squares = 0%). CONCLUSION Vedolizumab was safe and effective for the prophylaxis and management of early grade GI-aGVHD. More clinical evidence is warranted to validate these findings. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=345584, identifier CRD42022345584.
Collapse
Affiliation(s)
- Allen Cheng-Wei Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chen Dong
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Soon-Tzeh Tay
- Department of Medical Education, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ashwin Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kevin Sheng-Kai Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|