1
|
Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Želvys A, Lekešytė B, Malakauskaitė P, Gečaitė J, Malyško-Ptašinskė V, German N, Žalnėravičius R, Kašėta V, Kulbacka J, Novickij V. Improving bleomycin electrochemotherapy with gold nanoparticles: first in vivo study on intra-tumoral field amplification. Bioelectrochemistry 2025; 165:108999. [PMID: 40345058 DOI: 10.1016/j.bioelechem.2025.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/14/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
Electrochemotherapy (ECT) is a cancer treatment approach that utilizes the application of electroporation (EP) with standard chemotherapeutic drugs, resulting in a locally enhanced chemotherapy effect due to enhanced intracellular drug delivery. The aim of this study was to demonstrate (for the first time) that microsecond-range bleomycin electrochemotherapy (1.5 kV/cm × 100 μs × 8 pulses, 1 Hz), when combined with gold nanoparticles (AuNPs, 13 and 46 nm), can be efficiently utilized for in vivo carcinoma tumor treatment. It was anticipated that AuNPs would promote a better treatment response due to local electric field amplification within the tumor as predicted by available in vitro research. We focus the attenuation of tumor progression and reduction of the frequency of metastasis incl. the immune response in the murine BALB/C and 4T1 cancer model. It is shown that the application of 13 nm AuNPs hardly influenced the dynamics of tumor progression (when compared to ECT alone), the synergistic effects are not statistically significant by the end of experiment, which is not the case in vitro. However, the application of 46 nm AuNPs significantly potentiated the efficacy of ECT, which confirms the promising alliance of conductive nanoparticles for local intra-tumoral electric field amplification and ECT.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jovita Gečaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Veronika Malyško-Ptašinskė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Natalija German
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Rokas Žalnėravičius
- Centre for Physical Science and Technology (FTMC), Department of Electrochemical Materials Science, Vilnius, Lithuania
| | - Vytautas Kašėta
- State Research Institute Centre for Innovative Medicine, Department of Stem Cell Biology, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
2
|
Shiwani T, Singh Dhesi S, Wah TM. Reversible electroporation for cancer therapy. Br J Radiol 2025; 98:313-320. [PMID: 39579146 PMCID: PMC11840168 DOI: 10.1093/bjr/tqae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024] Open
Abstract
Reversible electroporation (EP) refers to the use of high-voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response. ECT was validated for palliative treatment of cutaneous tumours. Evidence to date shows a mean objective response rate of ∼80% in these patients. Regression of non-treated lesions has also been demonstrated, theorized to be from an in situ vaccination effect. Advances in electrode development have also allowed treatment of deep-seated metastatic lesions and primary tumours, with safety demonstrated in vivo. Calcium EP and combination immunotherapy or immunogene electrotransfer is also feasible, but research is limited. Adverse events of ECT are minimal; however, general anaesthesia is often necessary, and improvements in modelling capabilities and electrode design are required to enable sufficient electrical coverage. International collaboration between preclinical researchers, oncologists, and interventionalists is required to identify the most effective combination therapies, to optimize procedural factors, and to expand use, indications and assessment of reversible EP. Registries with standardized data collection methods may facilitate this.
Collapse
Affiliation(s)
- Taha Shiwani
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| | - Simran Singh Dhesi
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| | - Tze Min Wah
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
3
|
Lekešytė B, Mickevičiūtė E, Malakauskaitė P, Szewczyk A, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Želvys A, German N, Ramanavičienė A, Kulbacka J, Novickij J, Novickij V. Application of Gold Nanoparticles for Improvement of Electroporation-Assisted Drug Delivery and Bleomycin Electrochemotherapy. Pharmaceutics 2024; 16:1278. [PMID: 39458609 PMCID: PMC11510895 DOI: 10.3390/pharmaceutics16101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Electrochemotherapy (ECT) is a safe and efficient method of targeted drug delivery using pulsed electric fields (PEF), one that is based on the phenomenon of electroporation. However, the problems of electric field homogeneity within a tumor can cause a diminishing of the treatment efficacy, resulting only in partial response to the procedure. This work used gold nano-particles for electric field amplification, introducing the capability to improve available elec-trochemotherapy methods and solve problems associated with field non-homogeneity. Methods: We characterized the potential use of gold nanoparticles of 13 nm diameter (AuNPs: 13 nm) in combination with microsecond (0.6-1.5 kV/cm × 100 μs × 8 (1 Hz)) and nanosecond (6 kV/cm × 300-700 ns × 100 (1, 10, 100 kHz and 1 MHz)) electric field pulses. Finally, we tested the most prominent protocols (microsecond and nanosecond) in the context of bleomycin-based electrochemotherapy (4T1 mammary cancer cell line). Results: In the nano-pulse range, the synergistic effects (improved permeabilization and electrotransfer) were profound, with increased pulse burst frequency. Addi-tionally, AuNPs not only reduced the permeabilization thresholds but also affected pore resealing. It was shown that a saturated cytotoxic response with AuNPs can be triggered at significantly lower electric fields and that the AuNPs themselves are non-toxic for the cells either separately or in combination with bleomycin. Conclusions: The used electric fields are considered sub-threshold and/or not applicable for electrochemotherapy, however, when combined with AuNPs results in successful ECT, indicating the methodology's prospective applicability as an anticancer treatment method.
Collapse
Affiliation(s)
- Barbora Lekešytė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Eglė Mickevičiūtė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Paulina Malakauskaitė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Anna Szewczyk
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
| | - Almira Ramanavičienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
4
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Mickevičiūtė E, Kulbacka J, Rembiałkowska N, Zinkevičienė A, Novickij J, Novickij V. Calcium electroporation causes ATP depletion in cells and is effective both in microsecond and nanosecond pulse range as a modality of electrochemotherapy. Bioelectrochemistry 2024; 155:108574. [PMID: 37738862 DOI: 10.1016/j.bioelechem.2023.108574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Calcium electroporation is a modality of electrochemotherapy (ECT), which is based on intracellular electric field-mediated delivery of cytotoxic doses of calcium into the cells resulting in rapid cell death. In this work, we have developed a CHO-K1 luminescent cell line, which allowed the estimation of cell membrane permeabilization, ATP depletion and cytotoxicity evaluation without the use of additional markers and methodologies. We have shown the high efficiency of nanosecond pulses compressed into a MHz burst for application in calcium ECT treatments. The 5 kV/cm and 10 kV/cm nanosecond (100 and 600 ns) pulses were delivered in bursts of 10, 50 and 100 pulses (a total of 12 parametric protocols) and then compared to standard microsecond range sequences (100 µs × 8) of 0.4-1.4 kV/cm. The effects of calcium-free, 2 mM and 5 mM calcium electroporation treatments were characterized. It was shown that reversible electroporation is accompanied by ATP depletion associated with membrane damage, while during calcium ECT the ATP depletion is several-fold higher, which results in cell death. Finally, efficacy-wise equivalent pulse parameters from nanosecond and microsecond ranges were established, which can be used for calcium nano-ECT as a better alternative to ESOPE (European Standard Operating Procedures on Electrochemotherapy) protocols.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania; Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
6
|
Rembiałkowska N, Szlasa W, Radzevičiūtė-Valčiukė E, Kulbacka J, Novickij V. Negative effects of cancellation during nanosecond range High-Frequency calcium based electrochemotherapy in vitro. Int J Pharm 2023; 648:123611. [PMID: 37977287 DOI: 10.1016/j.ijpharm.2023.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Drug delivery using nanosecond pulsed electric fields is a new branch of electroporation-based treatments, which potentially can substitute European standard operating procedures for electrochemotherapy. In this work, for the first time, we characterize the effects of ultra-fast repetition frequency (1-2.5 MHz) nanosecond pulses (5-9 kV/cm, 200 and 400 ns) in the context of nano-electrochemotherapy with calcium. Additionally, we investigate the feasibility of bipolar symmetric (↑200 ns + ↓200 ns) and asymmetric (↑200 ns + ↓400 ns) nanosecond protocols for calcium delivery. The effects of bipolar cancellation and the influence of interphase delay (200 ns) are overviewed. Human lung cancer cell lines A549 and H69AR were used as a model. It was shown that unipolar pulses delivered at high frequency are effective for electrochemotherapy with a significant improvement in efficiency when the delay between separate pulses is reduced. Bipolar symmetric pulses trigger the cancellation phenomenon limiting applications for drug delivery and can be compensated by the asymmetry of the pulse (↑200 ns + ↓400 ns or ↑400 ns + ↓200 ns). The results of this study can be successfully used to derive a new generation of nsPEF protocols for successful electrochemotherapy treatments.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| |
Collapse
|
7
|
Rembiałkowska N, Novickij V, Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Gajewska-Naryniecka A, Kulbacka J. Susceptibility of various human cancer cell lines to nanosecond and microsecond range electrochemotherapy: Feasibility of multi-drug cocktails. Int J Pharm 2023; 646:123485. [PMID: 37802257 DOI: 10.1016/j.ijpharm.2023.123485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Electrochemotherapy (ECT) involves combining anticancer drugs with electroporation, which is induced by pulsed electric fields (PEFs), while the effects vary in effectiveness based on the specific parameters of the electrical pulses and susceptibility of the cells to a specific drug. In this work, we utilized conventional microsecond electroporation protocols (0.8 - 1.5 kV/cm × 100 μs × 8, 1 Hz) and the new modality of nanosecond pulses (4 and 8 kV/cm × 500 ns × 100, 1 kHz and 1 MHz), which are compressed into a high frequency burst. Sensitive and resistant lung, breast and ovarian human cancer cell lines were used in the study. In order to overcome drug-resistance, we have investigated the feasibility to use anticancer drug cocktails i.e., bleomycin and cisplatin combinations with metformin, vinorelbine and Dp44mT. The different susceptibility of various human cancer cells lines to electric pulses was determined, the efficacy of ECT was characterized and the type of cell death depending on the combinations of drugs was investigated. The results indicate that synergistic effects of PEFs with drug cocktails may be used to overcome drug-resistance in cancer, while the application of nsPEF provides more flexibility in parametric protocols and modulation of cancer cell death.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Medical University, Borowska 211 A, 50-556, Wroclaw, Poland.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | | | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Medical University, Borowska 211 A, 50-556, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| |
Collapse
|
8
|
Radzevičiūtė-Valčiukė E, Želvys A, Mickevičiūtė E, Gečaitė J, Zinkevičienė A, Malyško-Ptašinskė V, Kašėta V, Novickij J, Ivaškienė T, Novickij V. Calcium Electrochemotherapy for Tumor Eradication and the Potential of High-Frequency Nanosecond Protocols. Pharmaceuticals (Basel) 2023; 16:1083. [PMID: 37630998 PMCID: PMC10460074 DOI: 10.3390/ph16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium electroporation (CaEP) is an innovative approach to treating cancer, involving the internalization of supraphysiological amounts of calcium through electroporation, which leads to cell death. CaEP enables the replacement of chemotherapeutics (e.g., bleomycin). Here, we present a standard microsecond (μsCaEP) and novel high-frequency nanosecond protocols for calcium electroporation (nsCaEP) for the elimination of carcinoma tumors in C57BL/6J mice. We show the efficacy of CaEP in eliminating tumors and increasing their survival rates in vivo. The antitumor immune response after the treatment was observed by investigating immune cell populations in tumors, spleens, lymph nodes, and blood, as well as assessing antitumor antibodies. CaEP treatment resulted in an increased percentage of CD4+ and CD8+ central memory T cells and decreased splenic myeloid-derived suppressor cells (MDSC). Moreover, increased levels of antitumor IgG antibodies after CaEP treatment were detected. The experimental results demonstrated that the administration of CaEP led to tumor growth delay, increased survival rates, and stimulated immune response, indicating a potential synergistic relationship between CaEP and immunotherapy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Eglė Mickevičiūtė
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Tatjana Ivaškienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|