1
|
Chan SC, Chiu TL, Ng SH, Kao HW, Tsai ST, Liu SH. 18F-FET PET/CT can aid in diagnosing patients with indeterminate MRI findings for brain tumors: a prospective study. Ann Nucl Med 2025; 39:342-352. [PMID: 39589672 DOI: 10.1007/s12149-024-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This prospective study aimed to evaluate the diagnostic value of fluorine-18-labeled fluoroethyltyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in diagnosing brain tumors within an Asian patient population. METHODS Patients suspected of having primary or recurrent brain tumors were prospectively recruited. Each patient underwent 18F-FET and fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT on separate days within 1 week. We calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy to compare the diagnostic performance of the two PET scans. The standardized uptake value (SUV) and tumor-to-background ratio (TBR) of the lesions were determined using static images. Additionally, time-activity curves (TACs) and time-to-peak (TTP) were generated from the dynamic PET images. RESULTS From September 2019 to December 2023, 33 subjects were enrolled for reasons including suspected brain tumors (n = 20) or suspicious glioma recurrence (n = 8) on magnetic resonance imaging (MRI) and restaging for glioma (n = 5). Among the patients with suspected brain tumors or glioma recurrence on MRI, 25% had false-positive results. 18F-FET PET/CT accurately identified 86% of these false positives. The sensitivity, specificity, PPV, NPV, and accuracy of visual interpretation of 18F-FET PET/CT were 96.2%, 85.7%, 96.2%, 85.7%, and 93.9%, respectively. The corresponding 18F-FDG PET/CT values were 73.1%, 71.4%, 90.5%, 41.7%, and 72.7%. 18F-FET PET/CT demonstrated significantly higher sensitivity and accuracy than 18F-FDG PET (p = 0.031 and p = 0.030, respectively). Using TBRmean as an adjunct reference index enhanced the diagnostic accuracy of 18F-FET PET/CT, achieving a sensitivity and NPV of 100%. Wash-out TAC or TTP < 20 min was associated with a PPV of 100% for brain tumors. CONCLUSIONS 18F-FET PET/CT appears to be a valuable tool for assessing brain tumors with indeterminate MRI findings in this Asian cohort. 18F-FET PET/CT offers benefits over 18F-FDG PET in differentiating brain tumors from nontumor brain lesions, particularly when using semiquantitative analysis with TBR. This study was registered on CinicalTrial.gov (NCT06563024).
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan.
- Department of Nuclear Medicine, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan.
| | - Tsung-Lang Chiu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333423, Taiwan
| | - Hung-Wen Kao
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
- Department of Radiology, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hsin Liu
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| |
Collapse
|
2
|
Horsley PJ, Bailey DL, Schembri G, Hsiao E, Drummond J, Back MF. The role of amino acid PET in radiotherapy target volume delineation for adult-type diffuse gliomas: A review of the literature. Crit Rev Oncol Hematol 2025; 205:104552. [PMID: 39521308 DOI: 10.1016/j.critrevonc.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To summarise existing literature examining amino acid positron emission tomography (AA-PET) for radiotherapy target volume delineation in patients with gliomas. METHODS Systematic search of MEDLINE and EMBASE databases. RESULTS Twenty studies met inclusion criteria. Studies comparing MRI- and AA-PET- derived target volumes consistently found these to be complementary. Across studies, AA-PET was a strong predictor of the site of subsequent relapse. In studies examining AA-PET-guided radiotherapy at standard doses, including one study using reduced margins, survival outcomes were similar to historical cohorts whose volumes were generated using MRI alone. Four prospective single-arm trials examining AA-PET-guided dose-escalated radiotherapy reported mixed results. The two trials that used both a higher biologically-effective dose and boost-volumes defined using both MRI and AA-PET reported promising outcomes. CONCLUSION AA-PET is a promising complementary tool to MRI for radiotherapy target volume delineation, with potential benefits requiring further validation including margin reduction and facilitation of dose-escalation.
Collapse
Affiliation(s)
- Patrick J Horsley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Geoffrey Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - James Drummond
- Department of Radiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Michael F Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; The Brain Cancer Group, Sydney, New South Wales, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia; Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| |
Collapse
|
3
|
Robert JA, Leclerc A, Ducloie M, Emery E, Agostini D, Vigne J. Contribution of [ 18F]FET PET in the Management of Gliomas, from Diagnosis to Follow-Up: A Review. Pharmaceuticals (Basel) 2024; 17:1228. [PMID: 39338390 PMCID: PMC11435125 DOI: 10.3390/ph17091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas, the most common type of primary malignant brain tumors in adults, pose significant challenges in diagnosis and management due to their heterogeneity and potential aggressiveness. This review evaluates the utility of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) positron emission tomography (PET), a promising imaging modality, to enhance the clinical management of gliomas. We reviewed 82 studies involving 4657 patients, focusing on the application of [18F]FET in several key areas: diagnosis, grading, identification of IDH status and presence of oligodendroglial component, guided resection or biopsy, detection of residual tumor, guided radiotherapy, detection of malignant transformation in low-grade glioma, differentiation of recurrence versus treatment-related changes and prognostic factors, and treatment response evaluation. Our findings confirm that [18F]FET helps delineate tumor tissue, improves diagnostic accuracy, and aids in therapeutic decision-making by providing crucial insights into tumor metabolism. This review underscores the need for standardized parameters and further multicentric studies to solidify the role of [18F]FET PET in routine clinical practice. By offering a comprehensive overview of current research and practical implications, this paper highlights the added value of [18F]FET PET in improving management of glioma patients from diagnosis to follow-up.
Collapse
Affiliation(s)
- Jade Apolline Robert
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
| | - Arthur Leclerc
- Department of Neurosurgery, Caen University Hospital, 14000 Caen, France
- Caen Normandie University, ISTCT UMR6030, GIP Cyceron, 14000 Caen, France
| | - Mathilde Ducloie
- Department of Neurology, Caen University Hospital, 14000 Caen, France
- Centre François Baclesse, Department of Neurology, 14000 Caen, France
| | - Evelyne Emery
- Department of Neurosurgery, Caen University Hospital, 14000 Caen, France
| | - Denis Agostini
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
| | - Jonathan Vigne
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
- CHU de Caen Normandie, UNICAEN Department of Pharmacy, Normandie Université, 14000 Caen, France
- Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, Normandie Université, UNICAEN, INSERM U1237, PhIND, 14000 Caen, France
| |
Collapse
|
4
|
Latreche A, Dissaux G, Querellou S, Mazouz Fatmi D, Lucia F, Bordron A, Vu A, Touati R, Nguyen V, Hamya M, Dissaux B, Bourbonne V. Correlation between rCBV Delineation Similarity and Overall Survival in a Prospective Cohort of High-Grade Gliomas Patients: The Hidden Value of Multimodal MRI? Biomedicines 2024; 12:789. [PMID: 38672146 PMCID: PMC11048661 DOI: 10.3390/biomedicines12040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE The accuracy of target delineation in radiation treatment planning of high-grade gliomas (HGGs) is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Magnetic resonance imaging (MRI) represents the standard imaging modality for delineation of gliomas with inherent limitations in accurately determining the microscopic extent of tumors. The purpose of this study was to assess the survival impact of multi-observer delineation variability of multiparametric MRI (mpMRI) and [18F]-FET PET/CT. MATERIALS AND METHODS Thirty prospectively included patients with histologically confirmed HGGs underwent a PET/CT and mpMRI including diffusion-weighted imaging (DWI: b0, b1000, ADC), contrast-enhanced T1-weighted imaging (T1-Gado), T2-weighted fluid-attenuated inversion recovery (T2Flair), and perfusion-weighted imaging with computation of relative cerebral blood volume (rCBV) and K2 maps. Nine radiation oncologists delineated the PET/CT and MRI sequences. Spatial similarity (Dice similarity coefficient: DSC) was calculated between the readers for each sequence. Impact of the DSC on progression-free survival (PFS) and overall survival (OS) was assessed using Kaplan-Meier curves and the log-rank test. RESULTS The highest DSC mean values were reached for morphological sequences, ranging from 0.71 +/- 0.18 to 0.84 +/- 0.09 for T2Flair and T1Gado, respectively, while metabolic volumes defined by PET/CT achieved a mean DSC of 0.75 +/- 0.11. rCBV variability (mean DSC0.32 +/- 0.20) significantly impacted PFS (p = 0.02) and OS (p = 0.002). CONCLUSIONS Our data suggest that the T1-Gado and T2Flair sequences were the most reproducible sequences, followed by PET/CT. Reproducibility for functional sequences was low, but rCBV inter-reader similarity significantly impacted PFS and OS.
Collapse
Affiliation(s)
- Amina Latreche
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
| | - Gurvan Dissaux
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
| | - Solène Querellou
- Nuclear Medicine Department, University Hospital, 29200 Brest, France;
- Groupe d’Etude de la Thrombose Occidentale GETBO (INSERM UMR 1304), Université de Bretagne Occidentale, 29200 Brest, France
| | | | - François Lucia
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
- LaTIM UMR 1101, INSERM, Université de Bretagne Occidentale, 29200 Brest, France
| | - Anais Bordron
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
| | - Alicia Vu
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
| | - Ruben Touati
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
| | - Victor Nguyen
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
| | - Mohamed Hamya
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
| | - Brieg Dissaux
- Groupe d’Etude de la Thrombose Occidentale GETBO (INSERM UMR 1304), Université de Bretagne Occidentale, 29200 Brest, France
- Radiology Department, University Hospital, 29200 Brest, France;
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (A.L.); (G.D.); (F.L.); (A.B.); (A.V.); (V.N.); (M.H.)
- LaTIM UMR 1101, INSERM, Université de Bretagne Occidentale, 29200 Brest, France
| |
Collapse
|
5
|
Barry N, Koh ES, Ebert MA, Moore A, Francis RJ, Rowshanfarzad P, Hassan GM, Ng SP, Back M, Chua B, Pinkham MB, Pullar A, Phillips C, Sia J, Gorayski P, Le H, Gill S, Croker J, Bucknell N, Bettington C, Syed F, Jung K, Chang J, Bece A, Clark C, Wada M, Cook O, Whitehead A, Rossi A, Grose A, Scott AM. [18]F-fluoroethyl-l-tyrosine positron emission tomography for radiotherapy target delineation: Results from a Radiation Oncology credentialing program. Phys Imaging Radiat Oncol 2024; 30:100568. [PMID: 38585372 PMCID: PMC10998205 DOI: 10.1016/j.phro.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background and purpose The [18]F-fluoroethyl-l-tyrosine (FET) PET in Glioblastoma (FIG) study is an Australian prospective, multi-centre trial evaluating FET PET for newly diagnosed glioblastoma management. The Radiation Oncology credentialing program aimed to assess the feasibility in Radiation Oncologist (RO) derivation of standard-of-care target volumes (TVMR) and hybrid target volumes (TVMR+FET) incorporating pre-defined FET PET biological tumour volumes (BTVs). Materials and methods Central review and analysis of TVMR and TVMR+FET was undertaken across three benchmarking cases. BTVs were pre-defined by a sole nuclear medicine expert. Intraclass correlation coefficient (ICC) confidence intervals (CIs) evaluated volume agreement. RO contour spatial and boundary agreement were evaluated (Dice similarity coefficient [DSC], Jaccard index [JAC], overlap volume [OV], Hausdorff distance [HD] and mean absolute surface distance [MASD]). Dose plan generation (one case per site) was assessed. Results Data from 19 ROs across 10 trial sites (54 initial submissions, 8 resubmissions requested, 4 conditional passes) was assessed with an initial pass rate of 77.8 %; all resubmissions passed. TVMR+FET were significantly larger than TVMR (p < 0.001) for all cases. RO gross tumour volume (GTV) agreement was moderate-to-excellent for GTVMR (ICC = 0.910; 95 % CI, 0.708-0.997) and good-to-excellent for GTVMR+FET (ICC = 0.965; 95 % CI, 0.871-0.999). GTVMR+FET showed greater spatial overlap and boundary agreement compared to GTVMR. For the clinical target volume (CTV), CTVMR+FET showed lower average boundary agreement versus CTVMR (MASD: 1.73 mm vs. 1.61 mm, p = 0.042). All sites passed the planning exercise. Conclusions The credentialing program demonstrated feasibility in successful credentialing of 19 ROs across 10 sites, increasing national expertise in TVMR+FET delineation.
Collapse
Affiliation(s)
- Nathaniel Barry
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Eng-Siew Koh
- South Western Sydney Clinical School, University of New South Wales, Australia
| | - Martin A. Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Roslyn J. Francis
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
| | - Sweet P. Ng
- Department of Radiation Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Michael Back
- Department of Radiation Oncology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Benjamin Chua
- Department of Radiation Oncology, Royal Brisbane Womens Hospital, Brisbane, QLD, Australia
| | - Mark B. Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Andrew Pullar
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Claire Phillips
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, VIC, Australia
| | - Joseph Sia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, VIC, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Suki Gill
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jeremy Croker
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Nicholas Bucknell
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Catherine Bettington
- Department of Radiation Oncology, Royal Brisbane Womens Hospital, Brisbane, QLD, Australia
| | - Farhan Syed
- Department of Radiation Oncology, The Canberra Hospital, Canberra, ACT, Australia
| | - Kylie Jung
- Department of Radiation Oncology, The Canberra Hospital, Canberra, ACT, Australia
| | - Joe Chang
- South Western Sydney Clinical School, University of New South Wales, Australia
| | - Andrej Bece
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia
| | - Catherine Clark
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia
| | - Mori Wada
- Department of Radiation Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Olivia Cook
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Angela Whitehead
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Alana Rossi
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Andrew Grose
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Andrew M. Scott
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Breen WG, Aryal MP, Cao Y, Kim MM. Integrating multi-modal imaging in radiation treatments for glioblastoma. Neuro Oncol 2024; 26:S17-S25. [PMID: 38437666 PMCID: PMC10911793 DOI: 10.1093/neuonc/noad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Advances in diagnostic and treatment technology along with rapid developments in translational research may now allow the realization of precision radiotherapy. Integration of biologically informed multimodality imaging to address the spatial and temporal heterogeneity underlying treatment resistance in glioblastoma is now possible for patient care, with evidence of safety and potential benefit. Beyond their diagnostic utility, several candidate imaging biomarkers have emerged in recent early-phase clinical trials of biologically based radiotherapy, and their definitive assessment in multicenter prospective trials is already in development. In this review, the rationale for clinical implementation of candidate advanced magnetic resonance imaging and positron emission tomography imaging biomarkers to guide personalized radiotherapy, the current landscape, and future directions for integrating imaging biomarkers into radiotherapy for glioblastoma are summarized. Moving forward, response-adaptive radiotherapy using biologically informed imaging biomarkers to address emerging treatment resistance in rational combination with novel systemic therapies may ultimately permit improvements in glioblastoma outcomes and true individualization of patient care.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhava P Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|