1
|
Luo J, Zheng L, Jin Z, Yang Y, Krakowka WI, Hong E, Lombard M, Ayotte J, Ahsan H, Pinto JM, Aschebrook-Kilfoy B. Cancer Risk and Estimated Lithium Exposure in Drinking Groundwater in the US. JAMA Netw Open 2025; 8:e2460854. [PMID: 39976965 PMCID: PMC11843356 DOI: 10.1001/jamanetworkopen.2024.60854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 02/22/2025] Open
Abstract
Importance Lithium is a naturally occurring element in drinking water and is commonly used as a mood-stabilizing medication. Although clinical studies have reported associations between receiving lithium treatment and reduced cancer risk among patients with bipolar disorder, to our knowledge, the association between environmental lithium exposure and cancer risk has never been studied in the general population. Objectives To evaluate the association between exposure to lithium in drinking groundwater and cancer risk in the general population. Design, Setting, and Participants This cohort study included participants with electronic health record and residential address information but without cancer history at baseline from the All of Us Research Program between May 31, 2017, and June 30, 2022. Participants were followed up until February 15, 2023. Statistical analysis was performed from September 2023 through October 2024. Exposure Lithium concentration in groundwater, based on kriging interpolation of publicly available US Geological Survey data on lithium concentration for 4700 wells across the contiguous US between May 12, 1999, and November 6, 2018. Main Outcome and Measures The main outcome was cancer diagnosis or condition, obtained from electronic health records. Stratified Cox proportional hazards regression models were used to estimate the hazard ratios (HRs) and 95% CIs for risk of cancer overall and individual cancer types for increasing quintiles of the estimated lithium exposure in drinking groundwater, adjusting for socioeconomic, behavioral, and neighborhood-level variables. The analysis was further conducted in the western and eastern halves of the US and restricted to long-term residents living at their current address for at least 3 years. Results A total of 252 178 participants were included (median age, 52 years [IQR, 36-64 years]; 60.1% female). The median follow-up time was 3.6 years (IQR, 3.0-4.3 years), and 7573 incident cancer cases were identified. Higher estimated lithium exposure was consistently associated with reduced cancer risk. Compared with the first (lowest) quintile of lithium exposure, the HR for all cancers was 0.49 (95% CI, 0.31-0.78) for the fourth quintile and 0.29 (95% CI, 0.15-0.55) for the fifth quintile. These associations were found for all cancer types investigated in both females and males, among long-term residents, and in both western and eastern states. For example, for the fifth vs first quintile of lithium exposure for all cancers, the HR was 0.17 (95% CI, 0.07-0.42) in females and 0.13 (95% CI, 0.04-0.38) in males; for long-term residents, the HR was 0.32 (95% CI, 0.15-0.66) in females and 0.24 (95% CI, 0.11-0.52) in males; and the HR was 0.01 (95% CI, 0.00-0.09) in western states and 0.34 (95% CI, 0.21-0.57) in eastern states. Conclusions and Relevance In this cohort study of 252 178 participants, estimated lithium exposure in drinking groundwater was associated with reduced cancer risk. Given the sparse evidence and unknown mechanisms of this association, follow-up investigation is warranted.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Public Health Sciences, The University of Chicago Biological Science Division, Chicago, Illinois
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Liang Zheng
- Department of Thyroid Surgery, The First Hospital Affiliated With Sun Yat-Sen University, Guangzhou, China
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yuqing Yang
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - William Isaac Krakowka
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Eric Hong
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Melissa Lombard
- New England Water Science Center, US Geological Survey, Pembroke, New Hampshire
| | - Joseph Ayotte
- New England Water Science Center, US Geological Survey, Pembroke, New Hampshire
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago Biological Science Division, Chicago, Illinois
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
- Department of Family Medicine, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Jayant M. Pinto
- Department of Surgery, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, The University of Chicago Biological Science Division, Chicago, Illinois
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
- Department of Family Medicine, The University of Chicago Biological Science Division, Chicago, Illinois
| |
Collapse
|
2
|
Zhu B, Yang C, Hua S, Li K, Shang P, Chen X, Hua ZC. Lithium Enhances Ferroptosis sensitivity in melanoma cells and promotes CD8 + T Cell infiltration and differentiation. Free Radic Biol Med 2025; 227:233-245. [PMID: 39645207 DOI: 10.1016/j.freeradbiomed.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Lithium exposure reduces melanoma incidence and mortality, yet its therapeutic mechanisms are unclear. This study explores the effects of lithium on ferroptosis sensitivity and anti-tumor T cell response in melanoma. We found that lithium significantly enhanced RSL3-induced ferroptosis in vitro, evidenced by increased mitochondrial peroxide, lipid peroxidation, and mitochondrial abnormalities. Lithium also inhibited B16-F10 melanoma cell proliferation and migration in a dose-dependent manner. Cell cycle analysis showed lithium and RSL3 induced distinct perturbations, including G2/M and G0/G1 phase arrests. Mechanistically, lithium influenced intracellular ferrous ion levels by downregulating ferritin heavy chain (Fth1), crucial for iron homeostasis. The combination of lithium and RSL3 significantly suppressed tumor growth in mice, correlating with reduced Fth1 expression and increased iron deposition in the spleen and liver, highlighting a novel interaction between lithium and iron metabolism. Additionally, this combination enhanced CD8+ T cell infiltration and IFN-γ expression in the tumor microenvironment, especially among cytotoxic effector CD8+ T cells. These findings reveal the pro-ferroptotic and immune regulation roles of lithium, broaden our understanding of its biological roles, and propose new strategies for ferroptosis-targeted therapies in melanoma.
Collapse
Affiliation(s)
- Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Siqi Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Kaiqiang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Pengyou Shang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210032, China; Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Perna G, Pinto E, Spiti A, Torti T, Cucchi M, Caldirola D. Foundations for a Personalized Psycho-Oncology: The State of the Art. J Pers Med 2024; 14:892. [PMID: 39338146 PMCID: PMC11433554 DOI: 10.3390/jpm14090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Personalized psycho-oncology represents a major challenge for the holistic care of cancer patients. It focuses on individualized psychotherapeutic and psychiatric interventions to address specific psychological needs. This narrative review summarizes the current literature on personalized psycho-oncology and highlights the prevalence and impact of psychiatric/psychological disorders in cancer patients. Personalized approaches, including tailored interventions and interdisciplinary collaboration, have been shown to be effective in improving mental health and overall quality of life. The integration of inflammatory biomarkers into treatment plans is a promising but challenging way to alleviate mental health problems. In addition, there is a need for specific diagnostic tools and treatment guidelines that take into account the specific psychological impact of different types of cancer. Future research should aim to refine these personalized strategies, improve diagnostic accuracy, and evaluate the cost-effectiveness of these interventions to improve both the psychological well-being and treatment outcomes of cancer patients.
Collapse
Affiliation(s)
- Giampaolo Perna
- Department of Biological Sciences, Humanitas University, 20089 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (A.S.); (M.C.)
| | - Eleonora Pinto
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padua, Italy;
| | - Alessandro Spiti
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (A.S.); (M.C.)
| | - Tatiana Torti
- ASIPSE School of Cognitive-Behavioral-Therapy, 20124 Milan, Italy;
| | - Michele Cucchi
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (A.S.); (M.C.)
| | - Daniela Caldirola
- Department of Biological Sciences, Humanitas University, 20089 Milan, Italy;
| |
Collapse
|
4
|
Rahman MA, Sarker A, Ayaz M, Shatabdy AR, Haque N, Jalouli M, Rahman MDH, Mou TJ, Dey SK, Hoque Apu E, Zafar MS, Parvez MAK. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024; 12:1757. [PMID: 39200221 PMCID: PMC11351677 DOI: 10.3390/biomedicines12081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Autophagy is a unique catabolic process that degrades irrelevant or damaged components in eukaryotic cells to maintain homeostasis and eliminate infections from pathogenesis. Pathogenic bacteria have developed many autophagy manipulation techniques that affect host immune responses and intracellular bacterial pathogens have evolved to avoid xenophagy. However, reducing its effectiveness as an innate immune response has not yet been elucidated. Bacterial pathogens cause autophagy in infected cells as a cell-autonomous defense mechanism to eliminate the pathogen. However, harmful bacteria have learned to control autophagy and defeat host defenses. Intracellular bacteria can stimulate and control autophagy, while others inhibit it to prevent xenophagy and lysosomal breakdown. This review evaluates the putative functions for xenophagy in regulating bacterial infection, emphasizing that successful pathogens have evolved strategies to disrupt or exploit this defense, reducing its efficiency in innate immunity. Instead, animal models show that autophagy-associated proteins influence bacterial pathogenicity outside of xenophagy. We also examine the consequences of the complex interaction between autophagy and bacterial pathogens in light of current efforts to modify autophagy and develop host-directed therapeutics to fight bacterial infections. Therefore, effective pathogens have evolved to subvert or exploit xenophagy, although autophagy-associated proteins can influence bacterial pathogenicity outside of xenophagy. Finally, this review implies how the complex interaction between autophagy and bacterial pathogens affects host-directed therapy for bacterial pathogenesis.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Amily Sarker
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ananya Rahman Shatabdy
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Nabila Haque
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ehsanul Hoque Apu
- Department of Biomedical Science, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Md. Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| |
Collapse
|
5
|
Tümen D, Heumann P, Huber J, Hahn N, Macek C, Ernst M, Kandulski A, Kunst C, Gülow K. Unraveling Cancer's Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel) 2024; 16:2686. [PMID: 39123414 PMCID: PMC11312265 DOI: 10.3390/cancers16152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (N.H.)
| |
Collapse
|
6
|
ELKasar AO, Hussien FZ, Abdel-Hamied HE, Saleh IG, Mahgoup EM, El-Arabey AA, Abd-Allah AR. Effect of lithium on chemotherapy-induced neutropenia in Egyptian breast cancer patients; a prospective clinical study. Cancer Chemother Pharmacol 2024; 93:541-554. [PMID: 38324036 DOI: 10.1007/s00280-023-04620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/06/2023] [Indexed: 02/08/2024]
Abstract
PURPOSE Myelosuppressive chemotherapy-induced neutropenia (CIN) remains a major limitation of cancer treatment efficacy, necessitating very expensive supportive care. Lithium carbonate, an inexpensive drug, can increase the number of neutrophils, possibly providing an efficacious and cost-effective alternative for treating CIN. The aim of this study was to determine whether lithium therapy can attenuate chemotherapy-induced neutropenia and leukopenia in breast cancer patients. METHODS A total of 50 breast cancer patients were enrolled in this prospective, interventional, randomized, controlled, and single-blind study. The patients were divided into two groups: a control group (group 1, N = 25 patients) and a lithium-treated (treatment) group (group 2, N = 25 patients). Group 1 patients were further subclassified into a non-neutropenic control group (N = 16) and a neutropenic control (N = 9) based on the subsequent development of severe neutropenia, or not. The control group received 4 cycles of doxorubicin or epirubicin plus cyclophosphamide followed by 2 cycles of paclitaxel. The treatment group received the same regimen as the control group as well as oral lithium carbonate throughout the chemotherapy cycles. RESULTS The results showed that the absolute neutrophil count (ANC) was increased in the lithium-treated group, while it was markedly reduced in both the non-neutropenic and neutropenic control groups (by 55.56% and 65.42% post-4 chemotherapy cycles, and by 19.57% and 39.90% post-6 cycles, respectively). The same pattern of alterations was observed for the total white blood cell count in both the control and treatment groups. In addition, the incidence and period prevalence were greatly reduced in the lithium-treated group compared to non-neutropenic and neutropenic control groups. CONCLUSION Lithium therapy ameliorated chemotherapy-induced leukopenia and neutropenia in breast cancer patients. This may provide a new strategy for cost-effective treatment of CIN, particularly in Egyptian cancer patients.
Collapse
Affiliation(s)
- Ahmed O ELKasar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt
| | - Fatma Z Hussien
- Department of Clinical Oncology and Nuclear Medicine, Oncology Center, Faculty of Medicine, Tanta University Hospital, Tanta, Egypt
| | - Hala E Abdel-Hamied
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ibrahim G Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt
| | - Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt.
| | - Amr A El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt
| | - Adel R Abd-Allah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
7
|
Taskaeva I, Kasatova A, Razumov I, Bgatova N, Taskaev S. Lithium salts cytotoxicity and accumulation in melanoma cells in vitro. J Appl Toxicol 2024; 44:712-719. [PMID: 38146629 DOI: 10.1002/jat.4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Boron neutron capture therapy is a perspective selective technology for the destruction of cancer cells, while the use of lithium instead of boron may represent a new and promising vector for the development of neutron capture therapy (NCT). The aim of the study was a comparative assessment of the cytotoxicity of various lithium salts, as well as an analysis of the accumulation of lithium in tumor cells in vitro to determine the possibility of using lithium in NCT. The cytotoxicity of lithium salts was determined using MTT-test and colony forming assay on human fibroblasts BJ-5ta, human skin melanoma SK-Mel-28, and mouse skin melanoma B16 cell lines. An assessment of lithium concentration in cells was performed using inductively coupled plasma atomic emission spectrometry. Our results showed that three different lithium salts at a concentration of 40 μg/ml are not toxic for both tumor and normal cells. The highest uptake values were obtained on murine melanoma B16 cells when exposed to lithium carbonate (0.8 μg/106 cells); however, human melanoma SK-Mel-28 cells effectively accumulated both lithium carbonate and lithium citrate (about 0.46 μg/106 cells for two salts). Thus, our results demonstrate a range of non-toxic doses of lithium salts and a high uptake of lithium by tumor cells, which indicates the possibility to use the lithium in NCT.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Ivan Razumov
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| |
Collapse
|
8
|
Liu B, Yao X, Shang Y, Dai J. The multiple roles of autophagy in uveal melanoma and the microenvironment. J Cancer Res Clin Oncol 2024; 150:121. [PMID: 38467935 PMCID: PMC10927889 DOI: 10.1007/s00432-023-05576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults, and effective clinical treatment strategies are still lacking. Autophagy is a lysosome-dependent degradation system that can encapsulate abnormal proteins, damaged organelles. However, dysfunctional autophagy has multiple types and plays a complex role in tumorigenicity depending on many factors, such as tumor stage, microenvironment, signaling pathway activation, and application of autophagic drugs. METHODS A systematic review of the literature was conducted to analyze the role of autophagy in UM, as well as describing the development of autophagic drugs and the link between autophagy and the tumor microenvironment. RESULTS In this review, we summarize current research advances regarding the types of autophagy, the mechanisms of autophagy, the application of autophagy inhibitors or agonists, autophagy and the tumor microenvironment. Finally, we also discuss the relationship between autophagy and UM. CONCLUSION Understanding the molecular mechanisms of how autophagy differentially affects tumor progression may help to design better therapeutic regimens to prevent and treat UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Wang W, Lu D, Shi Y, Wang Y. Exploring the Neuroprotective Effects of Lithium in Ischemic Stroke: A literature review. Int J Med Sci 2024; 21:284-298. [PMID: 38169754 PMCID: PMC10758146 DOI: 10.7150/ijms.88195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Ischemic stroke ranks among the foremost clinical causes of mortality and disability, instigating neuronal degeneration, fatalities, and various sequelae. While standard treatments, such as intravenous thrombolysis and endovascular thrombectomy, prove effective, they come with limitations. Hence, there is a compelling need to develop neuroprotective agents capable of improving the functional outcomes of the nervous system. Numerous preclinical studies have demonstrated that lithium can act in multiple molecular pathways, including glycogen synthase kinase 3(GSK-3), the Wnt signaling pathway, the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling pathway, brain-derived neurotrophic factor (BDNF), mammalian target of rapamycin (mTOR), and glutamate receptors. Through these pathways, lithium has been shown to affect inflammation, autophagy, apoptosis, ferroptosis, excitotoxicity, and other pathological processes, thereby improving central nervous system (CNS) damage caused by ischemic stroke. Despite these promising preclinical findings, the number of clinical trials exploring lithium's efficacy remains limited. Additional trials are imperative to thoroughly ascertain the effectiveness and safety of lithium in clinical settings. This review delineates the mechanisms underpinning lithium's neuroprotective capabilities in the context of ischemic stroke. It elucidates the intricate interplay between these mechanisms and sheds light on the involvement of mitochondrial dysfunction and inflammatory markers in the pathophysiology of ischemic stroke. Furthermore, the review offers directions for future research, thereby advancing the understanding of the potential therapeutic utility of lithium and establishing a theoretical foundation for its clinical application.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Dunlin Lu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Youkui Shi
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology Ⅱ, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
10
|
Kuang J, Zheng Z, Ma W, Zeng S, Wu D, Weng X, Chen Y. Comprehensive analysis of Cuproplasia and immune microenvironment in lung adenocarcinoma. Front Pharmacol 2023; 14:1240736. [PMID: 37781711 PMCID: PMC10540310 DOI: 10.3389/fphar.2023.1240736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Trace elements such as copper are essential for human health. Recently the journal Nat Rev Cancer has put forward the concept of Cuproplasia, a way of promoting tumor growth through reliance on copper. We attempted to conduct a comprehensive analysis of Cuproplasia-related genes in lung adenocarcinoma (LUAD) to explore the mechanism of action of Cuproplasia-related genes in LUAD. Method: Transcriptome data and clinical information of LUAD were obtained from TCGA-LUAD and GSE31210, and prognostic models of Cuproplasia-related genes were constructed and verified by regression analysis of GSVA, WGCNA, univariate COX and lasso. The signal pathways affected by Cuproplasia-related genes were analyzed by GO, KEGG and hallmarK pathway enrichment methods. Five immunocell infiltration algorithms and IMVIGOR210 data were used to analyze immune cell content and immunotherapy outcomes in the high-low risk group. Results: In the results of WGCNA, BROWN and TURQUOISE were identified as modules closely related to Cuproplasia score. In the end, lasso regression analysis established a Cuproplasia-related signature (CRS) based on 24 genes, and the prognosis of high-risk populations was worse in TCGA-LUAD and GSE31210 datasets. The enrichment analysis showed that copper proliferation was mainly through chromosome, cell cycle, dna replication, g2m checkpoint and other pathways. Immunoinfiltration analysis showed that there were differences in the content of macrophages among the four algorithms. And IMVIGOR210 found that the lower the score, the more effective the immunotherapy was. Conclusion: The Cuproplasia related gene can be used to predict the prognosis and immunotherapy outcome of LUAD patients, and may exert its effect by affecting chromosome-related pathways and macrophages.
Collapse
Affiliation(s)
- Junjie Kuang
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Zemao Zheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Ma
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaohui Zeng
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xie Weng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medicine University, Guangzhou, Guangdong, China
| | - Yuming Chen
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|