1
|
Giugliano F, Giordano E, Gilardi L, Salimbeni BT, Zagami P, Esposito A, Marra A, Trapani D, Berton Giachetti PPM, Malagutti B, Henry T, Deandreis D, Curigliano G, Ceci F, Criscitiello C. Radioligand Therapy in Metastatic Breast Cancer: Harnessing Precision Oncology. Cancer Treat Rev 2025; 136:102940. [PMID: 40228448 DOI: 10.1016/j.ctrv.2025.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Radioligand therapy (RLT) represents a promising advancement in precision oncology and enables the targeted delivery of radiation to cancer cells. This approach has shown success in other tumor types, such as prostate cancer and neuroendocrine tumors. Its potential in metastatic breast cancer (mBC) is currently under investigation. This review discusses RLT mechanism of action, therapeutic potential, and integration into the existing therapeutic landscape of mBC. While clinical trials have shown promising results, challenges remain regarding target heterogeneity, implementation, and optimizing treatment strategies. Further research is essential to integrate RLT into clinical practice and improve patient outcomes fully.
Collapse
Affiliation(s)
- Federica Giugliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Inserm U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Elisa Giordano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Laura Gilardi
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Paola Zagami
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Angela Esposito
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Antonio Marra
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Pier Paolo Maria Berton Giachetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Bianca Malagutti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Théophraste Henry
- Division of Nuclear Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Desiree Deandreis
- Division of Nuclear Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Francesco Ceci
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy.
| |
Collapse
|
2
|
Scalambra L, Ruzzi F, Pittino OM, Semprini MS, Cappello C, Angelicola S, Palladini A, Nanni P, Goksøyr L, Fougeroux C, Penichet ML, Sander AF, Lollini PL. Targeting PCSK9, through an innovative cVLP-based vaccine, enhanced the therapeutic activity of a cVLP-HER2 vaccine in a preclinical model of HER2-positive mammary carcinoma. J Transl Med 2025; 23:136. [PMID: 39885551 PMCID: PMC11784117 DOI: 10.1186/s12967-025-06126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells. We present an innovative immunization approach combining capsid virus-like particle (cVLP)-based vaccines against HER2 and PCSK9. METHODS The therapeutic activity of the combined vaccine was evaluated in female mice challenged with HER2-positive mammary carcinoma cells. Controls included untreated mice and mice treated with cVLP-PCSK9 and cVLP-HER2 as standalone therapies. Antibodies elicited by vaccinations were detected through ELISA immunoassay. The functional activity of the antibodies was tested in 3D-soft agar assay on human HER2 + + + trastuzumab sensitive and resistant cells. RESULTS Mice vaccinated with cVLP-HER2 + cVLP-PCSK9 displayed tumor regression from the 40th day after cell challenge in 100% of mice remaining tumor-free even 4 months later. In contrast, 83% of mice treated with cVLP-HER2 vaccine alone experienced an initial tumor regression, followed by tumor relapse in 60% of subjects. Untreated mice and mice treated with the cVLP-PCSK9 vaccine alone developed progressive tumors within 1-2 months after cell injection. The combined vaccine approach elicited strong anti-human HER2 antibody responses (reaching 1-2 mg/ml range) comprising multiple immunoglobulins isotypes. cVLP-PCSK9 vaccine elicited anti-PCSK9 antibody responses, resulting in a marked reduction in PCSK9 serum levels. Although the anti-PCSK9 response was reduced when co-administered with cVLP-HER2, it remained significant. Moreover, both cVLP-HER2 + cVLP-PCSK9 and cVLP-HER2 alone induced anti-HER2 antibodies able to inhibit the 3D growth of human HER2 + + + BT-474 and trastuzumab-resistant BT-474 C5 cells. Strikingly, antibodies elicited by the combined vaccination were more effective than those elicited by the cVLP-HER2 vaccine alone in the inhibition of trastuzumab-resistant C5 cells. CONCLUSIONS The results indicate that cVLP-PCSK9 vaccination shows adjuvant activity when combined with cVLP-HER2 vaccine, enhancing its therapeutic efficacy against HER2-positive breast cancer and holding promise in overcoming the challenges posed by resistance and incomplete responses to HER2-targeted therapy.
Collapse
Affiliation(s)
- Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Oncology Division, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | | | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular GeneticsThe Molecular Biology InstituteJonsson Comprehensive Cancer Centre, University of California, Los Angeles (UCLA), CA, USA
| | - Adam Frederik Sander
- AdaptVac Aps, Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy.
| |
Collapse
|
3
|
Veeraraghavan J, De Angelis C, Gutierrez C, Liao FT, Sabotta C, Rimawi MF, Osborne CK, Schiff R. HER2-Positive Breast Cancer Treatment and Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:495-525. [PMID: 39821040 DOI: 10.1007/978-3-031-70875-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents. Efforts to develop new treatment regimens to treat/overcome resistance is futile without a primary understanding of the mechanistic underpinnings of resistance. Resistance could be attributed to mechanisms that are either specific to the tumor epithelial cells or those that emerge through changes in the tumor microenvironment. Reactivation of the HER receptor layer due to incomplete blockade of the HER receptor layer or due to alterations in the HER receptors is one of the major mechanisms. In other instances, resistance may occur due to deregulations in key downstream signaling such as the PI3K/AKT or RAS/MEK/ERK pathways or due to the emergence of compensatory pathways such as ER, other RTKs, or metabolic pathways. Potent new targeted agents and approaches to target key actionable drivers of resistance have already been identified, many of which are in early clinical development or under preclinical evaluation. Ongoing and future translational research will continue to uncover additional therapeutic vulnerabilities, as well as new targeted agents and approaches to treat and/or overcome anti-HER2 treatment resistance.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fu-Tien Liao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline Sabotta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Eisses B, van Geel JJL, Brouwers AH, Bensch F, Elias SG, Kuip EJM, Jager A, van der Vegt B, Lub-de Hooge MN, Emmering J, Arens AIJ, Zwezerijnen GJC, Vugts DJ, Menke-van der Houven van Oordt CW, de Vries EGE, Schröder CP. Whole-Body HER2 Heterogeneity Identified on HER2 PET in HER2-Negative, -Low, and -Positive Metastatic Breast Cancer. J Nucl Med 2024; 65:1540-1547. [PMID: 39237347 DOI: 10.2967/jnumed.124.267636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/10/2024] [Indexed: 09/07/2024] Open
Abstract
Understanding which patients with human epidermal growth factor receptor 2 (HER2)-negative or -low metastatic breast cancer (MBC) benefit from HER2-targeted strategies is urgently needed. We assessed the whole-body heterogeneity of HER2 expression on 89Zr-trastuzumab PET (HER2 PET) and the diagnostic performance of HER2 PET in a large series of patients, including HER2-negative and -low MBC. Methods: In the IMPACT-MBC study, patients with newly diagnosed and nonrapidly progressive MBC of all subtypes were included. Metastasis HER2 status was determined by immunohistochemistry and in situ hybridization.89Zr-trastuzumab uptake was quantified as SUVmax and SUVmean HER2 immunohistochemistry was related to the quantitative 89Zr-trastuzumab uptake of all metastases and corresponding biopsied metastasis, uptake heterogeneity, and qualitative scan evaluation. A prediction algorithm for HER2 immunohistochemistry positivity based on uptake was developed. Results: In 200 patients, 89Zr-trastuzumab uptake was quantified in 5,163 metastases, including 186 biopsied metastases. With increasing HER2 immunohistochemistry status, uptake was higher (geometric mean SUVmax of 7.0, 7.6, 7.3, and 17.4 for a HER2 immunohistochemistry score of 0, 1, 2, or 3+, respectively; P < 0.001). High uptake exceeding 14.6 (90th percentile) was observed in one third of patients with a HER2-negative or -low metastasis biopsy. The algorithm performed best when lesion site and size were incorporated (area under the curve, 0.86; 95% CI, 0.79-0.93). Conclusion: HER2 PET had good diagnostic performance in MBC, showing considerable whole-body HER2 heterogeneity and uptake above background in HER2-negative and -low MBC. This provides novel insights into HER2-negative and -low MBC compared with standard HER2 immunohistochemistry on a single biopsy.
Collapse
Affiliation(s)
- Bertha Eisses
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper J L van Geel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherland
| | - Frederike Bensch
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien J M Kuip
- Department of Medical Oncology, Radboud Medical Center, Nijmegen, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherland
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper Emmering
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anne I J Arens
- Department of Radiology and Nuclear Medicine, Radboud Medical Center, Nijmegen, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Daniëlle J Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolina P Schröder
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ab Mumin N, Ramli Hamid MT, Wong JHD, Chiew SF, Rahmat K, Ng KH. Investigation of breast cancer molecular subtype in a multi-ethnic population using MRI. PLoS One 2024; 19:e0309131. [PMID: 39208284 PMCID: PMC11361656 DOI: 10.1371/journal.pone.0309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Accurate subtyping of breast cancer is crucial for its diagnosis, management, and prognostication. This study aimed to determine the association of magnetic resonance imaging (MRI) breast features with the molecular subtype and aggressiveness of breast cancer in a multi-ethnic population. METHODS Treatment-naive patients with invasive breast carcinoma were included in this retrospective study. Breast MRI features were recorded based on the American College of Radiology-Breast Imaging Reporting and Data System (ACR-BIRADS) criteria, with tumour size, and apparent diffusion coefficient value (ADC). The statistical association was tested with Pearson Chi-Square Test of Independence for categorical data or the Kruskal-Wallis/ Mann Whitney U test for numerical data between the MRI features and molecular subtype, receptor status, tumour grade, lymphovascular infiltration (LVI) and axillary lymph node (ALN). Multinomial logistic regression was used to test the predictive likelihood of the significant features. The breast cancer subtypes were determined via immunohistochemistry (IHC) and dual-color dual-hapten in-situ hybridization (D-DISH). The expression statuses of ER, PR, and HER-2, LVI, and ALN were obtained from the histopathology report. The ER / PR / HER-2 was evaluated according to the American Society of Clinical Oncology / College of American Pathologists. RESULTS The study included 194 patients; 41.8% (n = 81) Chinese, 40.7% (n = 79) Malay, and 17.5% (n = 34) Indian, involving 71.6%(n = 139) luminal-like, 12.9%(n = 25) HER-2 enriched, and 15.5%(n = 30) Triple-negative breast cancer (TNBC). TNBC was associated with rim enhancement (p = 0.002) and peritumoral oedema (p = 0.004). HER-2 enriched tumour was associated with larger tumour size (p = 0.041). Luminal-like cancer was associated with irregular shape (p = 0.005) with circumscribed margin (p = 0.003). Other associations were ER-negative tumour with circumscribed margin (p = 0.002) and PR-negative with round shape (p = 0.001). Tumour sizes were larger in ER-negative (p = 0.044) and PR-negative (p = 0.022). Rim enhancement was significantly associated with higher grade (p = 0.001), and moderate peritumoral oedema with positive axillary lymph node (p = 0.002). CONCLUSION Certain MRI features can be applied to differentiate breast cancer molecular subtypes, receptor status and aggressiveness, even in a multi-ethnic population.
Collapse
Affiliation(s)
- Nazimah Ab Mumin
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya Research Imaging Centre, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, Department of Radiology, Universiti Teknologi MARA, Sg Buloh, Malaysia
| | | | - Jeannie Hsiu Ding Wong
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya Research Imaging Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Seow-Fan Chiew
- Faculty of Medicine, Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Kartini Rahmat
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya Research Imaging Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kwan Hoong Ng
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya Research Imaging Centre, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
6
|
Eissler N, Altena R, Alhuseinalkhudhur A, Bragina O, Feldwisch J, Wuerth G, Loftenius A, Brun N, Axelsson R, Tolmachev V, Sörensen J, Frejd FY. Affibody PET Imaging of HER2-Expressing Cancers as a Key to Guide HER2-Targeted Therapy. Biomedicines 2024; 12:1088. [PMID: 38791050 PMCID: PMC11118066 DOI: 10.3390/biomedicines12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.
Collapse
Affiliation(s)
| | - Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, 17164 Solna, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
| | - Ali Alhuseinalkhudhur
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Olga Bragina
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634055 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | | | | | | | | | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
| | - Fredrik Y. Frejd
- Affibody AB, 17165 Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| |
Collapse
|
7
|
Nicolini A, Ferrari P. Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way beyond. Cancers (Basel) 2024; 16:466. [PMID: 38275906 PMCID: PMC10814066 DOI: 10.3390/cancers16020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
"Targeted therapy" or "precision medicine" is a therapeutic strategy launched over two decades ago. It relies on drugs that inhibit key molecular mechanisms/pathways or genetic/epigenetic alterations that promote different cancer hallmarks. Many clinical trials, sponsored by multinational drug companies, have been carried out. During this time, research has increasingly uncovered the complexity of advanced breast cancer disease. Despite high expectations, patients have seen limited benefits from these clinical trials. Commonly, only a minority of trials are successful, and the few approved drugs are costly. The spread of this expensive therapeutic strategy has constrained the resources available for alternative research. Meanwhile, due to the high cost/benefit ratio, other therapeutic strategies have been proposed by researchers over time, though they are often not pursued due to a focus on precision medicine. Notable among these are drug repurposing and counteracting micrometastatic disease. The former provides an obvious answer to expensive targeted therapies, while the latter represents a new field to which efforts have recently been devoted, offering a "way beyond" the current research.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera—Universitaria Pisana, 56125 Pisa, Italy;
| |
Collapse
|
8
|
Guerriero JL, Lin JR, Pastorello RG, Du Z, Chen YA, Townsend MG, Shimada K, Hughes ME, Ren S, Tayob N, Zheng K, Mei S, Patterson A, Taneja KL, Metzger O, Tolaney SM, Lin NU, Dillon DA, Schnitt SJ, Sorger PK, Mittendorf EA, Santagata S. Qualification of a multiplexed tissue imaging assay and detection of novel patterns of HER2 heterogeneity in breast cancer. NPJ Breast Cancer 2024; 10:2. [PMID: 38167908 PMCID: PMC10761880 DOI: 10.1038/s41523-023-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Emerging data suggests that HER2 intratumoral heterogeneity (ITH) is associated with therapy resistance, highlighting the need for new strategies to assess HER2 ITH. A promising approach is leveraging multiplexed tissue analysis techniques such as cyclic immunofluorescence (CyCIF), which enable visualization and quantification of 10-60 antigens at single-cell resolution from individual tissue sections. In this study, we qualified a breast cancer-specific antibody panel, including HER2, ER, and PR, for multiplexed tissue imaging. We then compared the performance of these antibodies against established clinical standards using pixel-, cell- and tissue-level analyses, utilizing 866 tissue cores (representing 294 patients). To ensure reliability, the CyCIF antibodies were qualified against HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) data from the same samples. Our findings demonstrate the successful qualification of a breast cancer antibody panel for CyCIF, showing high concordance with established clinical antibodies. Subsequently, we employed the qualified antibodies, along with antibodies for CD45, CD68, PD-L1, p53, Ki67, pRB, and AR, to characterize 567 HER2+ invasive breast cancer samples from 189 patients. Through single-cell analysis, we identified four distinct cell clusters within HER2+ breast cancer exhibiting heterogeneous HER2 expression. Furthermore, these clusters displayed variations in ER, PR, p53, AR, and PD-L1 expression. To quantify the extent of heterogeneity, we calculated heterogeneity scores based on the diversity among these clusters. Our analysis revealed expression patterns that are relevant to breast cancer biology, with correlations to HER2 ITH and potential relevance to clinical outcomes.
Collapse
Affiliation(s)
- Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.
| | - Jia-Ren Lin
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Ricardo G Pastorello
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Hospital Sírio Libanês, São Paulo, SP, 01308-050, Brazil
| | - Ziming Du
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Madeline G Townsend
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kenichi Shimada
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Melissa E Hughes
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Siyang Ren
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kelly Zheng
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shaolin Mei
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Alyssa Patterson
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Krishan L Taneja
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Otto Metzger
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Nancy U Lin
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter K Sorger
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Sandro Santagata
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Ivanova M, Porta FM, D'Ercole M, Pescia C, Sajjadi E, Cursano G, De Camilli E, Pala O, Mazzarol G, Venetis K, Guerini-Rocco E, Curigliano G, Viale G, Fusco N. Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer. Virchows Arch 2024; 484:3-14. [PMID: 37770765 PMCID: PMC10791807 DOI: 10.1007/s00428-023-03656-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Since the release of the DESTINY-Breast04 (DB-04) trial findings in June 2022, the field of pathology has seen a renaissance of HER2 as a predictive biomarker in breast cancer. The trial focused on patients with metastatic breast cancer who were classified as "HER2-low," i.e., those with immunohistochemistry (IHC) HER2 1 + or 2 + and negative in situ hybridization (ISH) results. The study revealed that treating these patients with trastuzumab deruxtecan (T-DXd) instead of the oncologist's chosen chemotherapy led to outstanding improvements in survival. This has challenged the existing binary HER2 pathological classification system, which categorized tumors as either positive (overexpression/amplification) or negative, as per the ASCO/CAP 2018 guideline reaffirmed by ASCO/CAP 2023 guideline update. Given that DB-04 excluded patients with HER2 IHC score 0 status, the results of the ongoing DB-06 trial may shed further light on the potential benefits of T-DXd therapy for these patients. Roughly half of all breast cancers are estimated to belong to the HER2-low category, which does not represent a distinct or specific subtype of cancer. Instead, it encompasses a diverse group of tumors that exhibit clinical, morphological, immunohistochemical, and molecular variations. However, HER2-low offers a distinctive biomarker status that identifies a specific therapeutic regimen (i.e., T-DXd) linked to a favorable prognosis in breast cancer. This unique association emphasizes the importance of accurately identifying these tumors. Differentiating between a HER2 IHC score 0 and score 1 + has not been clinically significant until now. To ensure accurate classification and avoid misdiagnosis, it is necessary to adopt standardized procedures, guidelines, and specialized training for pathologists in interpreting HER2 expression in the lower spectrum. Additionally, the utilization of artificial intelligence holds promise in supporting this endeavor. Here, we address the current state of the art and unresolved issues in assessing HER2-low status, with a particular emphasis on the score 0. We explore the dilemma surrounding the exclusion of HER2-zero patients from potentially beneficial therapy based on traditional HER2 testing. Additionally, we examine the clinical context, considering that DB-04 primarily involved heavily pretreated late-stage metastatic breast cancers. We also delve into emerging evidence suggesting that extrapolating HER2-low status from the original diagnosis may lead to misleading results. Finally, we provide recommendations for conducting high-quality testing and propose a standardized pathology report in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Marianna D'Ercole
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Carlo Pescia
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elisa De Camilli
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Oriana Pala
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Giovanni Mazzarol
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy.
| |
Collapse
|
10
|
Radosevic-Robin N, Kossai M, Penault-Llorca F. New-generation technologies for spatial tissue analysis, indispensable tools for deciphering intratumor heterogeneity in the development of antibody-drug conjugates and radio-immunoconjugates for cancer treatment. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:28. [PMID: 38751472 PMCID: PMC11093076 DOI: 10.21037/tbcr-23-38] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 05/18/2024]
Abstract
Technologies allowing in situ tissue molecular analysis of the "high-plex" type (>20 molecules per tissue section) are the 21st century inventions that are revolutionizing our knowledge of the biology of malignant tumors and many benign alterations. These technologies are based on specific probe labeling systems for the detection of tissue components [proteins, messenger RNA (mRNA)], as well as on detailed image analysis, combined with computational tools. We are synthetically presenting technologies based on image analysis, such as multiplex immunofluorescence (mIF), imaging mass cytometry (IMC), and multiplexed ion beam imaging (MIBI), as well as the ones not based on image analysis, such as multiplex in situ hybridizations (ISHs) using various principles. All of them are supported by powerful software which enable both tissue segmentation and data analysis. In the context of cancer treatment personalization, these technologies can reveal areas of tumor tissue and/or cellular subpopulations that are responsible for good or bad responses to anticancer drugs. Thus, they represent an unprecedented aid in the exploration of intratumor heterogeneity (ITH), which has already been shown to be one of the main reasons for the therapeutic failure of targeted anticancer treatments. The arrival of antibody-drug conjugates (ADCs) and radio-immunoconjugates (RICs) in the therapeutic arsenal in oncology imposes a deep exploration of molecular ITH, where technologies of spatial tissue analysis reveal an emerging category of biomarkers-spatial biomarkers.
Collapse
Affiliation(s)
- Nina Radosevic-Robin
- Platform for Advanced or/and Novel Tissue Analyses (TANYA), Department of Pathology, The Jean Perrin Comprehensive Cancer Center, Clermont-Ferrand, France
- University Clermont Auvergne, INSERM U1240 [Molecular Imaging & Theragnostic Strategies (IMOST)], Clermont-Ferrand, France
| | - Myriam Kossai
- Platform for Advanced or/and Novel Tissue Analyses (TANYA), Department of Pathology, The Jean Perrin Comprehensive Cancer Center, Clermont-Ferrand, France
- University Clermont Auvergne, INSERM U1240 [Molecular Imaging & Theragnostic Strategies (IMOST)], Clermont-Ferrand, France
| | - Frederique Penault-Llorca
- Platform for Advanced or/and Novel Tissue Analyses (TANYA), Department of Pathology, The Jean Perrin Comprehensive Cancer Center, Clermont-Ferrand, France
- University Clermont Auvergne, INSERM U1240 [Molecular Imaging & Theragnostic Strategies (IMOST)], Clermont-Ferrand, France
| |
Collapse
|
11
|
Hou Y, Nitta H, Li Z. HER2 Intratumoral Heterogeneity in Breast Cancer, an Evolving Concept. Cancers (Basel) 2023; 15:2664. [PMID: 37345001 DOI: 10.3390/cancers15102664] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Amplification and/or overexpression of human epidermal growth factor receptor 2 (HER2) in breast cancer is associated with an adverse prognosis. The introduction of anti-HER2 targeted therapy has dramatically improved the clinical outcomes of patients with HER2-positive breast cancer. Unfortunately, a significant number of patients eventually relapse and develop distant metastasis. HER2 intratumoral heterogeneity (ITH) has been reported to be associated with poor prognosis in patients with anti-HER2 targeted therapies and was proposed to be a potential mechanism for anti-HER2 resistance. In this review, we described the current definition, common types of HER2 ITH in breast cancer, the challenge in interpretation of HER2 status in cases showing ITH and the clinical applications of anti-HER2 agents in breast cancer showing heterogeneous HER2 expression. Digital image analysis has emerged as an objective and reproducible scoring method and its role in the assessment of HER2 status with ITH remains to be demonstrated.
Collapse
Affiliation(s)
- Yanjun Hou
- Department of Pathology and Laboratory Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 28659, USA
| | | | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Zhang XN, Gao Y, Zhang XY, Guo NJ, Hou WQ, Wang SW, Zheng YC, Wang N, Liu HM, Wang B. Detailed curriculum vitae of HER2-targeted therapy. Pharmacol Ther 2023; 245:108417. [PMID: 37075933 DOI: 10.1016/j.pharmthera.2023.108417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
With the booming development of precision medicine, molecular targeted therapy has been widely used in clinical oncology treatment due to a smaller number of side effects and its superior accuracy compared to that of traditional strategies. Among them, human epidermal growth factor receptor 2 (HER2)-targeted therapy has attracted considerable attention and has been used in the clinical treatment of breast and gastric cancer. Despite excellent clinical effects, HER2-targeted therapy remains in its infancy due to its resulting inherent and acquired resistance. Here, a comprehensive overview of HER2 in numerous cancers is presented, including its biological role, involved signaling pathways, and the status of HER2-targeted therapy.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Wen-Qing Hou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Shu-Wu Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China.
| | - Bo Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|