1
|
Momiyama K, Tsutsumi S, Sakurai Y, Mogi S, Miyamoto S, Murakumo Y, Yamashita T. Significance of REV7 Expression in p16-Negative Oropharyngeal Squamous Cell Carcinoma. Head Neck 2025; 47:1142-1150. [PMID: 39605100 DOI: 10.1002/hed.28015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND REV7 is a multifunctional protein involved in various biological processes, including DNA damage response. REV7 expression in human cancer cells influences sensitivity to DNA-damaging agents, and its high expression level is reportedly associated with a poor prognosis in many carcinomas. However, the significance of REV7 expression in human papillomavirus 16-negative oropharyngeal squamous cell carcinoma (OPSCC) remains unclear. METHODS REV7 expression was assessed by immunohistochemical analysis in 79 patients with HPV16-negative OPSCC. We evaluated the effects of inhibiting REV7 expression on the proliferation and cisplatin sensitivity of FaDu, an HPV16-negative pharyngeal SCC cell line. RESULTS In patients with p16-negative OPSCC, the high-REV7-expression group experienced significantly shorter overall survival than the low-REV7-expression group (p = 0.03) in the Cox regression analysis. Furthermore, REV7-deficient FaDu cells showed suppressed cell growth and enhanced sensitivity to cisplatin in vitro. CONCLUSIONS REV7 expression is associated with a poor prognosis in HPV16-negative OPSCC.
Collapse
Affiliation(s)
- Kaho Momiyama
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shohei Tsutsumi
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Sachiyo Mogi
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shunsuke Miyamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
2
|
Kesen Y, Ichinoe M, Hayashi S, Umezawa A, Numata Y, Kogami T, Matsushita M, Sanoyama I, Hoshino A, Sakurai Y, Kato T, Murakumo Y. High levels of REV7 expression are associated with poor prognosis and chemoresistance in gastric adenocarcinoma. Pathol Int 2025; 75:21-33. [PMID: 39739346 DOI: 10.1111/pin.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
REV7 is a multifunctional protein essential for promoting cellular tolerance to DNA damage. REV7 expression is associated with disease progression and prognosis in several human malignant tumors. This study aimed to evaluate the clinical and biological significance of REV7 in gastric adenocarcinoma (GAD). REV7 expression in 167 resected GADs was immunohistochemically assessed and examined the association with clinicopathological features. Positive expression of REV7 was significantly associated with tumor undifferentiation (p < 0.001), lymphatic invasion (p = 0.035), recurrence (p = 0.042), and mortality (p = 0.031). The Kaplan-Meier curves with log-rank tests revealed significantly poorer progression-free survival (p = 0.049), overall survival (p = 0.037), and post-progression survival (p = 0.038) in the REV7-positive group. Multivariate analysis using the Cox proportional hazard model identified REV7 as an independent prognostic factor for overall survival (p = 0.028). REV7-depleted GAD cell lines demonstrated enhanced sensitivity to cisplatin compared with control cells. Additionally, the expression levels of REV7 in residual tumors from surgical specimens of patients who received preoperative chemotherapy were higher than those in samples without chemotherapy (p = 0.029), suggesting that REV7-positive tumors are chemoresistant. These results indicate that REV7 is a predictive biomarker for the prognosis and chemosensitivity of GAD.
Collapse
Affiliation(s)
- Yurika Kesen
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shoko Hayashi
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Thoracic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Atsuko Umezawa
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiko Numata
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Taro Kogami
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiro Matsushita
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Itaru Sanoyama
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiyoshi Hoshino
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuya Kato
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
3
|
Hayashi S, Ichinoe M, Sakurai Y, Kesen Y, Kato T, Sanoyama I, Hoshino A, Shiomi K, Mikubo M, Satoh Y, Murakumo Y. Elevated expression of REV7 correlates with poor prognosis in lung adenocarcinoma and its inactivation in carcinoma cells enhances chemosensitivity. Pathol Res Pract 2024; 266:155779. [PMID: 39708518 DOI: 10.1016/j.prp.2024.155779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
REV7 is a multifunctional protein involved in the DNA damage response, cell cycle regulation, gene expression, or primordial germ cell maintenance. REV7 expression in tumor cells is associated with clinical aggressive features and chemoresistance in several human malignancies, however, the clinicopathological significance of REV7 in lung adenocarcinoma (LUAD) has not been studied yet. In this study, we investigated the significance of REV7 expression in LUAD using clinical materials and cell lines. REV7 expression in 142 invasive LUADs were determined using immunohistochemistry, and the relationship between REV7 expression and clinicopathological features was analyzed. High levels of REV7 expression in tumor tissues were positively associated with progressive tumor behavior as assessed by Ki-67 labeling indexes (p < 0.001), maximum standardized uptake values on positron emission tomography (p = 0.005), pathological stage (p = 0.031), N factor (p = 0.048), recurrence (p = 0.038), and disease-specific death (p = 0.020). The REV7-high-expression group showed poorer relapse-free survival (RFS) (p = 0.025) and overall survival (OS) (p = 0.019) compared to the REV7-low-expression group, and REV7 was a significant prognostic factor for RFS and OS. CRISPR/Cas9-mediated REV7-knockout and siRNA-mediated REV7 knockdown were carried out using the LUAD cell lines A549 and H1975, respectively, and it was demonstrated that REV7 inactivation led to slower cell growth, attenuated activation of AKT signaling, and enhanced chemosensitivity compared with control cells. These results suggest that REV7 is a potential predictive biomarker for poor prognosis in invasive LUAD and a possible molecular target for LUAD management.
Collapse
Affiliation(s)
- Shoko Hayashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yurika Kesen
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takuya Kato
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Itaru Sanoyama
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Akiyoshi Hoshino
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Kazu Shiomi
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Masashi Mikubo
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yukitoshi Satoh
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
4
|
Dash RC, Arianna GA, Patel SM, Rizzo AA, Harrahill NJ, Korzhnev DM, Hadden MK. Probing hot spots of protein-protein interactions mediated by the safety-belt region of REV7. Structure 2024; 32:2134-2146.e3. [PMID: 39366370 PMCID: PMC11631137 DOI: 10.1016/j.str.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
REV7 is a HORMA (Hop1, Rev7, Mad2) family adaptor protein best known as an accessory subunit of the translesion synthesis (TLS) DNA polymerase ζ (Polζ). In this role, REV7 binds REV3, the catalytic subunit of Polζ, by locking REV7-binding motifs (RBMs) in REV3 underneath the REV7 safety-belt loop. The same mechanism is used by REV7 to interact with RBMs from other proteins in DNA damage response (DDR) and mitosis. Because of the importance of REV7 for TLS and other DDR pathways, targeting REV7:RBM protein-protein interactions (PPIs) with small molecules has emerged as a strategy to enhance cancer response to genotoxic chemotherapy. To identify druggable pockets at the REV7:RBM interface, we performed computational analyses of REV7 complexed with several RBM partners. The contributions of different interface regions to REV7:RBM stabilization were corroborated experimentally. These studies provide insights into key intermolecular interactions and establish targetable regions of REV7 for the design of REV7:RBM PPI inhibitors.
Collapse
Affiliation(s)
- Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA
| | - Gianluca A Arianna
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Seema M Patel
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA
| | - Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA.
| |
Collapse
|
5
|
Huang Y, Chen S, Yao N, Lin S, Zhang J, Xu C, Wu C, Chen G, Zhou D. Molecular mechanism of PARP inhibitor resistance. Oncoscience 2024; 11:69-91. [PMID: 39318358 PMCID: PMC11420906 DOI: 10.18632/oncoscience.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) are the first-approved anticancer drug designed to exploit synthetic lethality. PARPi selectively kill cancer cells with homologous recombination repair deficiency (HRD), as a result, PARPi are widely employed to treated BRCA1/2-mutant ovarian, breast, pancreatic and prostate cancers. Currently, four PARPi including Olaparib, Rucaparib, Niraparib, and Talazoparib have been developed and greatly improved clinical outcomes in cancer patients. However, accumulating evidences suggest that required or de novo resistance emerged. In this review, we discuss the molecular mechanisms leading to PARPi resistances and review the potential strategies to overcome PARPi resistance.
Collapse
Affiliation(s)
- Yi Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Simin Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Nan Yao
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Shikai Lin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Junyi Zhang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chengrui Xu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chenxuan Wu
- School of Public Health, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Danyang Zhou
- Department of Respiratory, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210012, Jiangsu, P.R. China
| |
Collapse
|
6
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
7
|
Tamaki A, Kato T, Sakurai Y, Sato K, Adachi K, Tadehara M, Kogami T, Matsushita M, Hoshino A, Sanoyama I, Numata Y, Umezawa A, Ichinoe M, Ichihara M, Kusano C, Murakumo Y. REV7 is involved in outcomes of platinum-based chemotherapy in pancreatic cancer by controlling the DNA damage response. Cancer Sci 2024; 115:660-671. [PMID: 38130032 PMCID: PMC10859597 DOI: 10.1111/cas.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
REV7 is a multifunctional protein implicated in various biological processes, including DNA damage response. REV7 expression in human cancer cells affects their sensitivity to DNA-damaging agents. In the present study, we investigated the significance of REV7 in pancreatic ductal adenocarcinoma (PDAC). REV7 expression was immunohistochemically examined in 92 resected PDAC specimens and 60 endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNAB) specimens of unresectable PDAC treated with platinum-based chemotherapy, and its association with clinicopathologic features was analyzed. Although REV7 expression was not significantly associated with the progression of primary tumors (T-factor and Stage) in either resected or unresectable PDAC, decreased levels of REV7 expression in EUS-FNAB specimens of unresectable PDAC were significantly associated with better outcomes of platinum-based chemotherapy and a favorable prognosis. REV7-deficient PDAC cell lines showed suppressed cell growth and enhanced sensitivity to cisplatin in vitro. Tumor-bearing mice generated using REV7-deficient PDAC cell lines also showed enhanced sensitivity to cisplatin in vivo. RNA sequencing analysis using WT and REV7-deficient PDAC cell lines revealed that REV7 inactivation promoted the downregulation of genes involved in the DNA repair and the upregulation of genes involved in apoptosis. Our results indicate that decreased expression of REV7 is associated with better outcomes of platinum-based chemotherapy in PDAC by suppressing the DNA damage response. It is also suggested that REV7 is a useful biomarker for predicting the outcome of platinum-based chemotherapy and the prognosis of unresectable PDAC and is a potential target for PDAC treatment.
Collapse
Affiliation(s)
- Akihiro Tamaki
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
- Department of GastroenterologyKitasato University School of MedicineSagamiharaJapan
| | - Takuya Kato
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yasutaka Sakurai
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Keita Sato
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Kai Adachi
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
- Department of GastroenterologyKitasato University School of MedicineSagamiharaJapan
| | - Masayoshi Tadehara
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
- Department of GastroenterologyKitasato University School of MedicineSagamiharaJapan
| | - Taro Kogami
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
- Department of GastroenterologyKitasato University School of MedicineSagamiharaJapan
| | - Masahiro Matsushita
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
- Department of GastroenterologyKitasato University School of MedicineSagamiharaJapan
| | - Akiyoshi Hoshino
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Itaru Sanoyama
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yoshiko Numata
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Atsuko Umezawa
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Masaaki Ichinoe
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Chika Kusano
- Department of GastroenterologyKitasato University School of MedicineSagamiharaJapan
| | - Yoshiki Murakumo
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| |
Collapse
|
8
|
Spinos T, Goutas D, Driva TS, Zografos E, Gakiopoulou C, Agrogiannis G, Zolota V, Tzelepi V, Manolis I, Koniaris E, Ioannou M, Lazaris AC. The Immunohistochemical Expression of REV-7 in Various Human Cancer Pathology Specimens: A Systematic Review. Cureus 2024; 16:e52542. [PMID: 38371007 PMCID: PMC10874486 DOI: 10.7759/cureus.52542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this systematic review is to summarize all existing evidence, regarding the immunohistochemical expression of REV-7 in different human cancer pathology specimens. Moreover, the association of REV-7 expression with disease severity (clinical course), patients' survival, prognosis, and response to various treatments, such as chemotherapy and irradiation, was investigated. Three databases (PubMed, Scopus, and Cochrane) were systematically screened, from inception to September 2, 2023, as suggested by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Only studies using immunohistochemical staining for REV-7 in paraffin-embedded cancer tissues were included. Nine studies met the inclusion criteria and were included in the final qualitative synthesis. All nine studies were retrospective and non-comparative ones. Selected studies reported immunohistochemical expression of REV-7 in different types of cancer, including testicular cancer, ovarian cancer, esophagus squamous cell carcinoma, prostate cancer, colorectal cancer, diffuse large B-cell lymphoma, breast cancer, lung cancer, and skin cancer. High REV-7 expression was associated with faster disease progression, resistance to available treatment options, and worse prognosis in the majority of included studies. These results indicate that immunohistochemical staining of REV-7 protein could potentially be used as a predictive tissue marker in certain cases. Promising results, arising from REV-7 inactivation experiments, render REV-7 targeting a potential therapeutic strategy for future cancer management, especially in the cases of chemoresistant or radioresistant disease.
Collapse
Affiliation(s)
- Theodoros Spinos
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - Dimitrios Goutas
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - Tatiana S Driva
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - Eleni Zografos
- Department of Clinical Therapeutics, Oncology Unit, Alexandra General Hospital, Athens, GRC
| | - Charikleia Gakiopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - George Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - Vasiliki Zolota
- Department of Pathology, University Hospital of Patras, Patras, GRC
| | - Vasiliki Tzelepi
- Department of Pathology, University Hospital of Patras, Patras, GRC
| | - Ioannis Manolis
- Department of Pathology, Hippokration General Hospital, Athens, GRC
| | | | - Maria Ioannou
- Department of Pathology, University of Thessaly, Larissa, GRC
| | - Andreas C Lazaris
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
9
|
Shimada Y, Kato T, Sakurai Y, Watanabe H, Nonaka M, Nanaura N, Ichinoe M, Murakumo Y. Identification of the promoter region regulating the transcription of the REV7 gene. Biochem Biophys Res Commun 2023; 662:8-17. [PMID: 37094431 DOI: 10.1016/j.bbrc.2023.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
REV7 is involved in various biological processes including DNA repair and mutagenesis, cell cycle regulation, gene transcription, and carcinogenesis. REV7 is highly expressed in adult testicular germ cells as well as several malignant tumors. REV7 expression levels are associated with prognosis in several human cancers, however, the mechanism of REV7 transcriptional regulation has not been elucidated. In this study, we characterized the promoter region of the REV7 gene. A luciferase reporter assay using the human germ cell tumor cell line NEC8 was utilized to examine the upstream genomic region of REV7 for transcriptional activity, and two transcriptional activation regions were identified. We determined a small genomic region important for transcriptional activation using site-directed mutagenesis; this region is shared by several putative binding motifs for transcription factors, including the cAMP-responsive element modulator (CREM), cAMP-response element binding protein (CREB), and B-lymphocyte-induced maturation protein-1 (BLIMP-1). Exogenous CREM and CREB expression had no effect on the transcriptional activity in NEC8 cells or the human embryonic kidney cell line HEK293T. In contrast, exogenous BLIMP-1 expression increased luciferase reporter activity in HEK293T cells but unexpectedly decreased activity in NEC8 cells. Chromatin immunoprecipitation analysis demonstrated that BLIMP-1 binds to the genomic region near the binding motif in the REV7 promoter. Additionally, BLIMP-1 overexpression promoted endogenous REV7 expression in HEK293T cells. These findings suggest that BLIMP-1 may be a putative transcriptional regulator of REV7 in mammalian cells.
Collapse
Affiliation(s)
- Yuko Shimada
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takuya Kato
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hitoe Watanabe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Mayu Nonaka
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Natsumi Nanaura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|