1
|
Yu R, Zhao F, Xu Z, Zhang G, Du B, Shu Q. Current status and future of cancer vaccines: A bibliographic study. Heliyon 2024; 10:e24404. [PMID: 38293405 PMCID: PMC10826732 DOI: 10.1016/j.heliyon.2024.e24404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Background Cancer vaccines are an important component of tumour immunotherapy. An increasing number of studies have shown that cancer vaccines have considerable clinical benefits. With the development of tumour precision medicine, cancer vaccines have become important because of their individualised targeting effects. However, few bibliometric studies have conducted comprehensive systematic reviews in this field. This study aimed to assess the scientific output and trends in cancer vaccine research from a global perspective. Methods We collected publications on cancer vaccines from the Web of Science Core Collection database, which was limited to articles and reviews in English. Microsoft Excel, VOS Viewer, and CiteSpace V were used for quantitative and visual analyses. Results A total of 7807 articles were included. From 1991 to 2022, the number of publications increased annually. The United States had the highest number of articles published in this field (48.28 %), the highest citation frequency (183,964 times), and the highest H-index (182). The National Institutes of Health topped the list with 476 articles. Schlom J had the highest number of published articles (128) and was the main investigator in this field. The journal, Cancer Immunology Immunotherapy, had published the highest number of articles in related fields. In recent years, tumour microenvironment, immune checkpoint inhibitors, particle vaccines, tumour antigens, and dendritic cells have become research hotspots related to cancer vaccines. Conclusion Cancer vaccines are a popular research topic in the field of tumour immunotherapy. Related research and publications will enter a boom stage. "Immune checkpoint inhibitors", "tumour microenvironment" and "dendritic cells" may become future research hotspots, while "T-cell suppressor" is a potential puzzle to be solved.
Collapse
Affiliation(s)
- Rui Yu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangmin Zhao
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeting Xu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gaochenxi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqing Du
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
3
|
He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B 2022; 12:2969-2989. [PMID: 35345451 PMCID: PMC8942458 DOI: 10.1016/j.apsb.2022.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.
Collapse
|
4
|
Hemmati S, Keshavarz-Fathi M, Razi S, Rezaei N. Gene Therapy and Genetic Vaccines. CANCER IMMUNOLOGY 2021:129-142. [DOI: 10.1007/978-3-030-50287-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Riccardo F, Barutello G, Petito A, Tarone L, Conti L, Arigoni M, Musiu C, Izzo S, Volante M, Longo DL, Merighi IF, Papotti M, Cavallo F, Quaglino E. Immunization against ROS1 by DNA Electroporation Impairs K-Ras-Driven Lung Adenocarcinomas . Vaccines (Basel) 2020; 8:vaccines8020166. [PMID: 32268572 PMCID: PMC7349290 DOI: 10.3390/vaccines8020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide. Despite the introduction of tyrosine kinase inhibitors and immunotherapeutic approaches, there is still an urgent need for novel strategies to improve patient survival. ROS1, a tyrosine kinase receptor endowed with oncoantigen features, is activated by chromosomal rearrangement or overexpression in NSCLC and in several tumor histotypes. In this work, we have exploited transgenic mice harboring the activated K-Ras oncogene (K-RasG12D) that spontaneously develop metastatic NSCLC as a preclinical model to test the efficacy of ROS1 immune targeting. Indeed, qPCR and immunohistochemical analyses revealed ROS1 overexpression in the autochthonous primary tumors and extrathoracic metastases developed by K-RasG12D mice and in a derived transplantable cell line. As proof of concept, we have evaluated the effects of the intramuscular electroporation (electrovaccination) of plasmids coding for mouse- and human-ROS1 on the progression of these NSCLC models. A significant increase in survival was observed in ROS1-electrovaccinated mice challenged with the transplantable cell line. It is worth noting that tumors were completely rejected, and immune memory was achieved, albeit only in a few mice. Most importantly, ROS1 electrovaccination was also found to be effective in slowing the development of autochthonous NSCLC in K-RasG12D mice.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Angela Petito
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Chiara Musiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Stefania Izzo
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Marco Volante
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), 10126 Torino, Italy;
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Mauro Papotti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| |
Collapse
|
6
|
Tel-eVax: a genetic vaccine targeting telomerase for treatment of canine lymphoma. J Transl Med 2018; 16:349. [PMID: 30537967 PMCID: PMC6290499 DOI: 10.1186/s12967-018-1738-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND we have recently shown that Tel-eVax, a genetic vaccine targeting dog telomerase (dTERT) and based on Adenovirus (Ad)/DNA Electro-Gene-Transfer (DNA-EGT) technology can induce strong immune response and increase overall survival (OS) of dogs affected by multicentric Diffuse Large B cell Lymphoma (DLBCL) when combined to COP therapy in a double-arm study. Here, we have utilized a clinically validated device for veterinary electroporation called Vet-ePorator™, based on Cliniporator™ technology currently utilized and approved in Europe for electrochemotherapy applications and adapted to electrogenetransfer (EGT). METHODS 17 dogs affected by DLBCL were vaccinated using two Ad vector injections (Prime phase) followed by DNA-EGT (Boost phase) by means of a Vet-ePorator™ device and treated in the same time with a 27-week Madison Wisconsin CHOP protocol. The immune response was measured by ELISA assays using pool of peptides. RESULTS No significant adverse effects were observed. The OS of vaccine/CHOP animals was 64.5 weeks, in line with the previous study. Dogs developed antibodies against the immunizing antigen. CONCLUSIONS Tel-eVax in combination with CHOP is safe and immunogenic in lymphoma canine patients. These data confirm the therapeutic efficacy of dTERT vaccine and hold promise for the treatment of dogs affected by other cancer types. More importantly, our findings may translate to human clinical trials and represent new strategies for cancer treatment.
Collapse
|
7
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
8
|
Meko'o JLD, Xing Y, Zhang H, Lu Y, Wu J, Cao R. Immunopreventive effects against murine H22 hepatocellular carcinoma in vivo by a DNA vaccine targeting a gastrin- releasing peptide. Asian Pac J Cancer Prev 2014; 15:9039-43. [PMID: 25374249 DOI: 10.7314/apjcp.2014.15.20.9039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There is a continuing need for innovative alternative therapies for liver cancer. DNA vaccines for hormone/ growth factor immune deprivation represent a feasible and attractive approach for cancer treatment. We reported a preventive effect of a DNA vaccine based on six copies of the B cell epitope GRP18-27 with optimized adjuvants against H22 hepatocarcinoma. Vaccination with pCR3.1-VS-HSP65-TP-GRP6-M2 (vaccine) elicited much higher level of anti-GRP antibodies and proved efficacious in preventing growth of transplanted hepatocarcinoma cells. The tumor size and weight were significantly lower (p<0.05) in the vaccine subgroup than in the control pCR3.1-VS-TP-HSP65-TP-GRP6, pCR3.1-VS-TP-HSP65-TP-M2 or saline subgroups. In addition, significant reduction of tumor-induced angiogenesis associated with intradermal tumors of H22 cells was observed. These potent effects may open ways towards the development of new immunotherapeutic approaches in the treatment of liver cancer.
Collapse
|
9
|
Small JC, Kurupati RK, Zhou X, Bian A, Chi E, Li Y, Xiang Z, Ertl HCJ. Construction and characterization of E1- and E3-deleted adenovirus vectors expressing two antigens from two separate expression cassettes. Hum Gene Ther 2014; 25:328-38. [PMID: 24367921 DOI: 10.1089/hum.2013.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we describe a series of replication-defective adenovirus vectors designed to express transgene products from two expression cassettes placed into the deleted E1 and E3 domains. Vectors that contained an E1 cassette with a cytomegalovirus promoter in the forward orientation and an E3 cassette with the chicken β-actin promoter in the reverse orientation grew to acceptable yields and expressed both transgenes. Additionally, they elicited immune responses to both transgene products. Levels of expression and the vectors' immunogenicity were influenced by the presence of regulatory elements shared between the two expression cassettes. Specifically, vectors that carried the same intron and enhancer in both expression cassettes could be rescued and expanded, but they were poorly immunogenic. Deletion of the enhancer or both the enhancer and the intron from the E3 cassette increased T- and B-cell responses to both transgene products.
Collapse
Affiliation(s)
- Juliana C Small
- 1 Cellular and Molecular Biology, University of Pennsylvania , Philadelphia, PA 19104
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gavazza A, Lubas G, Fridman A, Peruzzi D, Impellizeri JA, Luberto L, Marra E, Roscilli G, Ciliberto G, Aurisicchio L. Safety and efficacy of a genetic vaccine targeting telomerase plus chemotherapy for the therapy of canine B-cell lymphoma. Hum Gene Ther 2014; 24:728-38. [PMID: 23902422 DOI: 10.1089/hum.2013.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Client-owned pet dogs represent exceptional translational models for advancement of cancer research because they reflect the complex heterogeneity observed in human cancer. We have recently shown that a genetic vaccine targeting dog telomerase reverse transcriptase (dTERT) and based on adenovirus DNA electro-gene-transfer (Ad/DNA-EGT) technology can induce strong cell-mediated immune responses against this tumor antigen and increase overall survival of dogs affected by B-cell lymphosarcoma (LSA) in comparison with historical controls when combined with a cyclophosphamide, vincristine, and prednisone (COP) chemotherapy regimen. Here, we have conducted a double-arm clinical trial with an extended number of LSA patients, measured the antigen-specific immune response, and evaluated potential toxic effects of the immunotherapy along with a follow-up of patients survival for 3.5 years. The immune response was measured by enzyme-linked immunospot assay. The expression of dTERT was quantified by quantitative polymerase chain reaction. Changes in hematological parameters, local/systemic toxicity or organic dysfunction and fever were monitored over time during the treatment. dTERT-specific cell-mediated immune responses were induced in almost all treated animals. No adverse effects were observed in any dog patient that underwent treatment. The overall survival time of vaccine/COP-treated dogs was significantly increased over the COP-only cohort (>76.1 vs. 29.3 weeks, respectively, p<0.0001). There was a significant association between dTERT expression levels in LSA cells and overall survival among vaccinated patients. In conclusion, Ad/DNA-EGT-based cancer vaccine against dTERT in combination with COP chemotherapy is safe and significantly prolongs the survival of LSA canine patients. These data confirm the therapeutic efficacy of dTERT vaccine and support the evaluation of this approach for other cancer types as well as the translation of this approach to human clinical trials.
Collapse
Affiliation(s)
- Alessandra Gavazza
- University of Pisa, Department of Veterinary Sciences, San Piero a Grado 56122, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aurisicchio L, Peruzzi D, Koo G, Wei WZ, La Monica N, Ciliberto G. Immunogenicity and therapeutic efficacy of a dual-component genetic cancer vaccine cotargeting carcinoembryonic antigen and HER2/neu in preclinical models. Hum Gene Ther 2014; 25:121-31. [PMID: 24195644 PMCID: PMC3922413 DOI: 10.1089/hum.2013.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
Several cancer vaccine efforts have been directed to simultaneously cotarget multiple tumor antigens, with the intent to achieve broader immune responses and more effective control of cancer growth. Genetic cancer vaccines based on in vivo muscle electro-gene-transfer of plasmid DNA (DNA-EGT) and adenoviral vectors represent promising modalities to elicit powerful immune responses against tumor-associated antigens (TAAs) such as carcinoembryonic antigen (CEA) and human epidermal growth factor receptor-2 (HER2)/neu. Combinations of these modalities of immunization (heterologous prime-boost) can induce superior immune reactions as compared with single-modality vaccines. We have generated a dual component-dual target genetic cancer vaccine consisting of a DNA moiety containing equal amounts of two plasmids, one encoding the extracellular and transmembrane domains of HER2 (ECD.TM) and the other encoding CEA fused to the B subunit of Escherichia coli heat-labile toxin (LTB), and of an adenoviral subtype 6 dicistronic vector carrying the same two tumor antigens gene constructs. The CEA/HER2 vaccine was tested in two different CEA/HER2 double-transgenic mouse models and in NOD/scid-DR1 mice engrafted with the human immune system. The immune response was measured by enzyme-linked immunospot assay, flow cytometry, and ELISA. The CEA/HER2 vaccine was able to break immune tolerance against both antigens. Induction of a T cell and antibody immune response was detected in immune-tolerant mice. Most importantly, the vaccine was able to slow the growth of HER2/neu⁺ and CEA⁺ tumors. A significant T cell response was measured in NOD/scid-DR1 mice engrafted with human cord blood cells. In conclusion, the CEA/HER2 genetic vaccine was immunogenic and able to confer significant therapeutic effects. These data warrant the evaluation of this vaccination strategy in human clinical trials.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Istituto di Ricerche di Biologia Molecolare (IRBM), 00040 Pomezia, Rome, Italy
| | - Daniela Peruzzi
- Istituto di Ricerche di Biologia Molecolare (IRBM), 00040 Pomezia, Rome, Italy
| | - Gloria Koo
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Nicola La Monica
- Istituto di Ricerche di Biologia Molecolare (IRBM), 00040 Pomezia, Rome, Italy
| | - Gennaro Ciliberto
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute G. Pascale, 80131 Naples, Italy
| |
Collapse
|
12
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
13
|
Marra E, Palombo F, Ciliberto G, Aurisicchio L. Kinesin spindle protein SiRNA slows tumor progression. J Cell Physiol 2012; 228:58-64. [PMID: 22552964 DOI: 10.1002/jcp.24103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention.
Collapse
|
14
|
Aurisicchio L, Ciliberto G. Genetic cancer vaccines: current status and perspectives. Expert Opin Biol Ther 2012; 12:1043-58. [PMID: 22577875 DOI: 10.1517/14712598.2012.689279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The recent approval of the first therapeutic cancer vaccine by the US Regulatory Agency represents a breakthrough event in the history of cancer treatment. The past scepticism towards this type of therapeutic intervention is now replaced by great expectations. The field is now moving towards the development of alternative vaccination technologies, which are capable of generating stronger, more durable and efficient immune responses against specific tumour-associated antigens (TAAs) in combination with cheaper and more standardised manufacturing. AREAS COVERED In this context, genetic vaccines are emerging among the most promising methodologies. Several evidences point to combinations of different genetic immunisation modalities (heterologous prime/boost) as a powerful approach to induce superior immune responses and achieve greater clinical efficacy. In this review, we provide an overview of the current status of development of genetic cancer vaccines with particular emphasis on adenoviral vector prime/DNA boost vaccination schedules. EXPERT OPINION We believe that therapeutic genetic cancer vaccines have the strong potential to become an established therapeutic modality for cancer in next coming years, in a manner similar to what have now become monoclonal antibodies.
Collapse
|