1
|
Herbst P, Draguet C, Barragán-Montero AM, Villarroel EB, Vera MC, Populaire P, Haustermans K, Sterpin E. Potential of automated online adaptive proton therapy to reduce margins for oesophageal cancer. Phys Imaging Radiat Oncol 2025; 33:100712. [PMID: 40123774 PMCID: PMC11926429 DOI: 10.1016/j.phro.2025.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
Background and purpose Proton therapy for oesophageal cancer is administered over multiple fractions, based on a single pre-treatment image. However, anatomical changes can lead to the deterioration of the treatment plan, necessitating manual replanning. To keep this within limits, increased residual margins are employed. This study aimed to evaluate the proposed automated Online Adaptive Proton Therapy (OAPT) strategies on their capability to reduce the need for manual replanning, while also exploring the possibility of margin reduction. Materials and methods Two automated OAPT methods were examined: Automated Dose Restoration (ADR) and Automated Full Adaptation (AFA). ADR makes use of dose restoration, restoring the original dose map based on the patient's altered anatomy. AFA adapts the contours used for plan optimization by applying a deformation field, not only correcting for density changes, but also for the relative location of organs. A comparative analysis of OAPT strategies, evaluatingD 98% tumour coverage on 17 patients, was conducted. Results The nominal results of non-adapted plans with 7 mm residual margins required manual replanning for 18% of the patients. ADR reduced this to 6%, while AFA eliminated the need for manual replanning. With 2 mm margins, 47% of cases required manual replanning. ADR reduced this to 18%, and AFA further reduced it to 11%. Conclusions The proposed OAPT strategies offered a marked improvement compared to a non-adaptive approach. ADR and AFA significantly reduced the necessity for manual replanning and facilitated the reduction of residual margins, enhancing dose conformity and reducing treatment toxicity.
Collapse
Affiliation(s)
- Pascal Herbst
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- UCLouvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- RaySearch Laboratories AB, Stockholm, Sweden
| | - Camille Draguet
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- UCLouvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Ana M. Barragán-Montero
- UCLouvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Elena Borderías Villarroel
- UCLouvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Macarena Chocan Vera
- UCLouvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Pieter Populaire
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Karin Haustermans
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Edmond Sterpin
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- UCLouvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| |
Collapse
|
2
|
Shyllon S, Penfold S, Dalfsen R, Kirkness E, Hug B, Rowshanfarzad P, Devlin P, Tang C, Le H, Gorayski P, Grogan G, Kearvell R, Ebert MA. Dosimetric comparison of proton therapy and CyberKnife in stereotactic body radiation therapy for liver cancers. Phys Eng Sci Med 2024; 47:1203-1212. [PMID: 38809365 PMCID: PMC11408538 DOI: 10.1007/s13246-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Stereotactic body radiation therapy (SBRT) has been increasingly used for the ablation of liver tumours. CyberKnife and proton beam therapy (PBT) are two advanced treatment technologies suitable to deliver SBRT with high dose conformity and steep dose gradients. However, there is very limited data comparing the dosimetric characteristics of CyberKnife to PBT for liver SBRT. PBT and CyberKnife plans were retrospectively generated using 4DCT datasets of ten patients who were previously treated for hepatocellular carcinoma (HCC, N = 5) and liver metastasis (N = 5). Dose volume histogram data was assessed and compared against selected criteria; given a dose prescription of 54 Gy in 3 fractions for liver metastases and 45 Gy in 3 fractions for HCC, with previously published consensus-based normal tissue dose constraints. Comparison of evaluation parameters showed a statistically significant difference for target volume coverage and liver, lungs and spinal cord (p < 0.05) dose, while chest wall and skin did not indicate a significant difference between the two modalities. A number of optimal normal tissue constraints was violated by both the CyberKnife and proton plans for the same patients due to proximity of tumour to chest wall. PBT resulted in greater organ sparing, the extent of which was mainly dependent on tumour location. Tumours located on the liver periphery experienced the largest increase in organ sparing. Organ sparing for CyberKnife was comparable with PBT for small target volumes.
Collapse
Affiliation(s)
- Samuel Shyllon
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
- Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Scott Penfold
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Physics, University of Adelaide, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Ray Dalfsen
- PT Product Engineering, Elekta, Adelaide, SA, Australia
| | - Elsebe Kirkness
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ben Hug
- 5D Clinics, Claremont, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia.
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia.
| | | | - Colin Tang
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Garry Grogan
- Radiotherapy Physics, The Churchill Hospital, Headington, Oxford, UK
| | | | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| |
Collapse
|
3
|
Sabouri P, Molitoris J, Ranjbar M, Moreau J, Simone CB, Mohindra P, Langen K, Mossahebi S. Dosimetric Evaluation and Reproducibility of Breath-hold Plans in Intensity Modulated Proton Therapy: An Initial Clinical Experience. Adv Radiat Oncol 2024; 9:101392. [PMID: 38292885 PMCID: PMC10826160 DOI: 10.1016/j.adro.2023.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/05/2023] [Indexed: 02/01/2024] Open
Abstract
Purpose Breath-hold (BH) technique can mitigate target motion, minimize target margins, reduce normal tissue doses, and lower the effect of interplay effects with intensity-modulated proton therapy (IMPT). This study presents dosimetric comparisons between BH and nonbreath-hold (non-BH) IMPT plans and investigates the reproducibility of BH plans using frequent quality assurance (QA) computed tomography scans (CT). Methods and Materials Data from 77 consecutive patients with liver (n = 32), mediastinal/lung (n = 21), nonliver upper abdomen (n = 20), and malignancies in the gastroesophageal junction (n = 4), that were treated with a BH spirometry system (SDX) were evaluated. All patients underwent both BH CT and 4-dimensional CT simulations. Clinically acceptable BH and non-BH plans were generated on each scan, and dose-volume histograms of the 2 plans were compared. Reproducibility of the BH plans for 30 consecutive patients was assessed using 1 to 3 QA CTs per patient and variations in dose-volume histograms for deformed target and organs at risk (OARs) volumes were compared with the initial CT plan. Results Use of BH scans reduced initial and boost target volumes to 72% ± 20% and 70% ± 17% of non-BH volumes, respectively. Additionally, mean dose to liver, stomach, kidney, esophagus, heart, and lung V20 were each reduced to 71% to 79% with the BH technique. Similarly, small and large bowels, heart, and spinal cord maximum doses were each lowered to 68% to 84%. Analysis of 62 QA CT scans demonstrated that mean target and OAR doses using BH scans were reproducible to within 5% of their nominal plan values. Conclusions The BH technique reduces the irradiated volume, leading to clinically significant reductions in OAR doses. By mitigating tumor motion, the BH technique leads to reproducible target coverage and OAR doses. Its use can reduce motion-related uncertainties that are normally associated with the treatment of thoracic and abdominal tumors and, therefore, optimize IMPT delivery.
Collapse
Affiliation(s)
- Pouya Sabouri
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jason Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
- Maryland Proton Treatment Center, Baltimore, Maryland
| | - Maida Ranjbar
- Department of Radiation Oncology, University of California San Diego, La Jolla, California
| | | | | | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
- Maryland Proton Treatment Center, Baltimore, Maryland
| | - Katja Langen
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
- Maryland Proton Treatment Center, Baltimore, Maryland
| |
Collapse
|
4
|
Missimer JH, Emert F, Lomax AJ, Weber DC. Automatic lung segmentation of magnetic resonance images: A new approach applied to healthy volunteers undergoing enhanced Deep-Inspiration-Breath-Hold for motion-mitigated 4D proton therapy of lung tumors. Phys Imaging Radiat Oncol 2024; 29:100531. [PMID: 38292650 PMCID: PMC10825631 DOI: 10.1016/j.phro.2024.100531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Background and purpose Respiratory suppression techniques represent an effective motion mitigation strategy for 4D-irradiation of lung tumors with protons. A magnetic resonance imaging (MRI)-based study applied and analyzed methods for this purpose, including enhanced Deep-Inspiration-Breath-Hold (eDIBH). Twenty-one healthy volunteers (41-58 years) underwent thoracic MR scans in four imaging sessions containing two eDIBH-guided MRIs per session to simulate motion-dependent irradiation conditions. The automated MRI segmentation algorithm presented here was critical in determining the lung volumes (LVs) achieved during eDIBH. Materials and methods The study included 168 MRIs acquired under eDIBH conditions. The lung segmentation algorithm consisted of four analysis steps: (i) image preprocessing, (ii) MRI histogram analysis with thresholding, (iii) automatic segmentation, (iv) 3D-clustering. To validate the algorithm, 46 eDIBH-MRIs were manually contoured. Sørensen-Dice similarity coefficients (DSCs) and relative deviations of LVs were determined as similarity measures. Assessment of intrasessional and intersessional LV variations and their differences provided estimates of statistical and systematic errors. Results Lung segmentation time for 100 2D-MRI planes was ∼ 10 s. Compared to manual lung contouring, the median DSC was 0.94 with a lower 95 % confidence level (CL) of 0.92. The relative volume deviations yielded a median value of 0.059 and 95 % CLs of -0.013 and 0.13. Artifact-based volume errors, mainly of the trachea, were estimated. Estimated statistical and systematic errors ranged between 6 and 8 %. Conclusions The presented analytical algorithm is fast, precise, and readily available. The results are comparable to time-consuming, manual segmentations and other automatic segmentation approaches. Post-processing to remove image artifacts is under development.
Collapse
Affiliation(s)
- John H. Missimer
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Frank Emert
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Antony J. Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Damien C. Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
5
|
de Koster RJC, Thummerer A, Scandurra D, Langendijk JA, Both S. Technical note: Evaluation of deep learning based synthetic CTs clinical readiness for dose and NTCP driven head and neck adaptive proton therapy. Med Phys 2023; 50:8023-8033. [PMID: 37831597 DOI: 10.1002/mp.16782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have recently shown to successfully correct CBCT images, which suffer from severe imaging artifacts, and generate high quality synthetic CT (sCT) images which enable CBCT-based proton dose calculations. PURPOSE To compare daily CBCT-based sCT images to planning CTs (pCT) and rCTs of head and neck (HN) cancer patients to investigate the dosimetric accuracy of CBCT-based sCTs in a scenario mimicking actual clinical practice. METHODS Data of 56 HN cancer patients, previously treated with proton therapy was used to generate 1.962 sCT images, using a previously developed and trained deep convolutional neural network. Clinical IMPT treatment plans were recalculated on the pCT, weekly rCTs and daily sCTs. The dosimetric accuracy of sCTs was compared to same day rCTs and the initial planning CT. As a reference, rCTs were also compared to pCTs. The dose difference between sCTs and rCTs/pCT was quantified by calculating the D98 difference for target volumes and Dmean difference for organs-at-risk. To investigate the clinical relevancy of possible dose differences, NTCP values were calculated for dysphagia and xerostomia. RESULTS For target volumes, only minor dose differences were found for sCT versus rCT and sCT versus pCT, with dose differences mostly within ±1.5%. Larger dose differences were observed in OARs, where a general shift towards positive differences was found, with the largest difference in the left parotid gland. Delta NTCP values for grade 2 dysphagia and xerostomia were within ±2.5% for 90% of the sCTs. CONCLUSIONS Target doses showed high similarity between rCTs and sCTs. Further investigations are required to identify the origin of the dose differences at OAR levels and its relevance in clinical decision making.
Collapse
Affiliation(s)
- Rutger J C de Koster
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrian Thummerer
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daniel Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
The impact of organ motion and the appliance of mitigation strategies on the effectiveness of hypoxia-guided proton therapy for non-small cell lung cancer. Radiother Oncol 2022; 176:208-214. [PMID: 36228759 DOI: 10.1016/j.radonc.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the impact of organ motion on hypoxia-guided proton therapy treatments for non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS Hypoxia PET and 4D imaging data of six NSCLC patients were used to simulate hypoxia-guided proton therapy with different motion mitigation strategies including rescanning, breath-hold, respiratory gating and tumour tracking. Motion-induced dose degradation was estimated for treatment plans with dose painting of hypoxic tumour sub-volumes at escalated dose levels. Tumour control probability (TCP) and dosimetry indices were assessed to weigh the clinical benefit of dose escalation and motion mitigation. In addition, the difference in normal tissue complication probability (NTCP) between escalated proton and photon VMAT treatments has been assessed. RESULTS Motion-induced dose degradation was found for target coverage (CTV V95% up to -4%) and quality of the dose-escalation-by-contour (QRMS up to 6%) as a function of motion amplitude and amount of dose escalation. The TCP benefit coming from dose escalation (+4-13%) outweighs the motion-induced losses (<2%). Significant average NTCP reductions of dose-escalated proton plans were found for lungs (-14%), oesophagus (-10%) and heart (-16%) compared to conventional VMAT plans. The best plan dosimetry was obtained with breath hold and respiratory gating with rescanning. CONCLUSION NSCLC affected by hypoxia appears to be a prime target for proton therapy which, by dose-escalation, allows to mitigate hypoxia-induced radio-resistance despite the sensitivity to organ motion. Furthermore, substantial reduction in normal tissue toxicity can be expected compared to conventional VMAT. Accessibility and standardization of hypoxia imaging and clinical trials are necessary to confirm these findings in a clinical setting.
Collapse
|
7
|
Razdevsek G, Simoncic U, Snoj L, Studen A. The dose accumulation and the impact of deformable image registration on dose reporting parameters in a moving patient undergoing proton radiotherapy. Radiol Oncol 2022; 56:248-258. [PMID: 35575586 PMCID: PMC9122289 DOI: 10.2478/raon-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Potential changes in patient anatomy during proton radiotherapy may lead to a deviation of the delivered dose. A dose estimate can be computed through a deformable image registration (DIR) driven dose accumulation. The present study evaluates the accumulated dose uncertainties in a patient subject to an inadvertent breathing associated motion. MATERIALS AND METHODS A virtual lung tumour was inserted into a pair of single participant landmark annotated computed tomography images depicting opposite breathing phases, with the deep inspiration breath-hold the planning reference and the exhale the off-reference geometry. A novel Monte Carlo N-Particle, Version 6 (MCNP6) dose engine was developed, validated and used in treatment plan optimization. Three DIR methods were compared and used to transfer the exhale simulated dose to the reference geometry. Dose conformity and homogeneity measures from International Committee on Radioactivity Units and Measurements (ICRU) reports 78 and 83 were evaluated on simulated dose distributions registered with different DIR algorithms. RESULTS The MCNP6 dose engine handled patient-like geometries in reasonable dose calculation times. All registration methods were able to align image associated landmarks to distances, comparable to voxel sizes. A moderate deterioration of ICRU measures was encountered in comparing doses in on and off-reference anatomy. There were statistically significant DIR driven differences in ICRU measures, particularly a 10% difference in the relative D98% for planning tumour volume and in the 3 mm/3% gamma passing rate. CONCLUSIONS T he dose accumulation over two anatomies resulted in a DIR driven uncertainty, important in reporting the associated ICRU measures for quality assurance.
Collapse
Affiliation(s)
- Gasper Razdevsek
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Simoncic
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Luka Snoj
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Andrej Studen
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
8
|
Knopf AC, Czerska K, Fracchiolla F, Graeff C, Molinelli S, Rinaldi I, Rucincki A, Sterpin E, Stützer K, Trnkova P, Zhang Y, Chang JY, Giap H, Liu W, Schild SE, Simone CB, Lomax AJ, Meijers A. Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – a comprehensive review. Radiother Oncol 2022; 169:77-85. [DOI: 10.1016/j.radonc.2022.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
|
9
|
Crockett C, Salem A, Thippu Jayaprakash K. Shooting the Star: Mitigating Respiratory Motion in Lung Cancer Radiotherapy. Clin Oncol (R Coll Radiol) 2021; 34:160-163. [PMID: 34893390 DOI: 10.1016/j.clon.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Affiliation(s)
- C Crockett
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK.
| | - A Salem
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - K Thippu Jayaprakash
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK
| |
Collapse
|
10
|
Taunk NK, Burgdorf B, Dong L, Ben-Josef E. Simultaneous Multiple Liver Metastasis Treated with Pencil Beam Proton Stereotactic Body Radiotherapy (SBRT). Int J Part Ther 2021; 8:89-94. [PMID: 34722815 PMCID: PMC8489493 DOI: 10.14338/ijpt-20-00085.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Compared with photon stereotactic body radiotherapy (SBRT) plans that may have to use many more penetrating x-ray beams for each isocenter, proton SBRT with ultrahypofractionated doses use fewer beam angles and offer significantly reduced low-dose radiation bath to normal liver tissue. We demonstrate techniques to deliver safe and effective proton SBRT, where planning and organ motion complexity further increased with multiple liver lesions. For treatment planning, we recommend robust and logical beam angles, avoiding devices and encouraging entry perpendicular to the dominant motion, as well as volumetric repainting to mitigate the interplay effect to clinically acceptable levels. This report highlights the significant technical challenges with ultrahypofractionated proton pencil beam scanning liver therapy, how they are managed, and the effectiveness of this treatment.
Collapse
Affiliation(s)
- Neil K Taunk
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan Burgdorf
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Dong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edgar Ben-Josef
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Target motion management in breast cancer radiation therapy. Radiol Oncol 2021; 55:393-408. [PMID: 34626533 PMCID: PMC8647788 DOI: 10.2478/raon-2021-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Background Over the last two decades, breast cancer remains the main cause of cancer deaths in women. To treat this type of cancer, radiation therapy (RT) has proved to be efficient. RT for breast cancer is, however, challenged by intrafractional motion caused by respiration. The problem is more severe for the left-sided breast cancer due to the proximity to the heart as an organ-at-risk. While particle therapy results in superior dose characteristics than conventional RT, due to the physics of particle interactions in the body, particle therapy is more sensitive to target motion. Conclusions This review highlights current and emerging strategies for the management of intrafractional target motion in breast cancer treatment with an emphasis on particle therapy, as a modern RT technique. There are major challenges associated with transferring real-time motion monitoring technologies from photon to particles beams. Surface imaging would be the dominant imaging modality for real-time intrafractional motion monitoring for breast cancer. The magnetic resonance imaging (MRI) guidance and ultra high dose rate (FLASH)-RT seem to be state-of-the-art approaches to deal with 4D RT for breast cancer.
Collapse
|
12
|
Flatten V, Burg JM, Witt M, Derksen L, Fragoso Costa P, Wulff J, Bäumer C, Timmermann B, Weber U, Vorwerk H, Engenhart-Cabillic R, Zink K, Baumann KS. Estimating the modulating effect of lung tissue in particle therapy using a clinical CT voxel histogram analysis. Phys Med Biol 2021; 66. [PMID: 34298533 DOI: 10.1088/1361-6560/ac176e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
To treat lung tumours with particle therapy, different additional tasks and challenges in treatment planning and application have to be addressed thoroughly. One of these tasks is the quantification and consideration of the Bragg peak degradation due to lung tissue: As lung is an heterogeneous tissue, the Bragg peak is broadened when particles traverse the microscopic alveoli. These are not fully resolved in clinical CT images and thus, the effect is not considered in the dose calculation. In this work, a correlation between the CT histograms of heterogeneous material and the impact on the Bragg peak curve is presented. Different inorganic materials were scanned with a conventional CT scanner and additionally, the Bragg peak degradation was measured in a proton beam and was then quantified. A model is proposed that allows an estimation of the modulation power by performing a histogram analysis on the CT scan. To validate the model for organic samples, a second measurement series was performed with frozen porcine lunge samples. This allows to investigate the possible limits of the proposed model in a set-up closer to clinical conditions. For lung substitutes, the agreement between model and measurement is within ±0.05 mm and for the organic lung samples, within ±0.15 mm. This work presents a novel, simple and efficient method to estimate if and how much a material or a distinct region (within the lung) is degrading the Bragg peak on the basis of a common clinical CT image. Up until now, only a direct in-beam measurement of the region or material of interest could answer this question.
Collapse
Affiliation(s)
- Veronika Flatten
- Department of Radiotherapy and Radiooncology, University Hospital of Giessen and Marburg Campus Marburg, Marburg, GERMANY
| | - Jan Michael Burg
- , University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, GERMANY
| | - Matthias Witt
- Department of Radiotherapy and Radiooncology, University Hospital of Giessen and Marburg Campus Marburg, Marburg, GERMANY
| | - Larissa Derksen
- , University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, GERMANY
| | | | - Jörg Wulff
- Medical Physics, Westdeutsches Protonentherapiezentrum Essen gGmbH, Essen, GERMANY
| | | | - Beate Timmermann
- Deparment of Particle Therapy, University Hospital Essen, Essen, GERMANY
| | - Uli Weber
- , GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt, Hessen, GERMANY
| | - Hilke Vorwerk
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, GERMANY
| | - Rita Engenhart-Cabillic
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, GERMANY
| | - Klemens Zink
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, GERMANY
| | - Kilian-Simon Baumann
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, GERMANY
| |
Collapse
|
13
|
Finazzi T, Schneiders FL, Senan S. Developments in radiation techniques for thoracic malignancies. Eur Respir Rev 2021; 30:200224. [PMID: 33952599 PMCID: PMC9488563 DOI: 10.1183/16000617.0224-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is a cornerstone of modern lung cancer treatment alongside surgery, chemotherapy, immunotherapy and targeted therapies. Advances in radiotherapy techniques have enhanced the accuracy of radiation delivery, which has contributed to the evolution of radiation therapy into a guideline-recommended treatment in both early-stage and locally advanced nonsmall cell lung cancer. Furthermore, although radiotherapy has long been used for palliation of disease in advanced lung cancer, it is increasingly having a role as a locally ablative treatment in patients with oligometastatic disease.This review provides an overview of recent developments in radiation techniques, particularly for non-radiation oncologists who are involved in the care of lung cancer patients. Technical advances are discussed, and findings of recent clinical trials are highlighted, all of which have led to a changing perception of the role of radiation therapy in multidisciplinary care.
Collapse
Affiliation(s)
- Tobias Finazzi
- Clinic of Radiotherapy and Radiation Oncology, University Hospital Basel, Basel, Switzerland
| | - Famke L Schneiders
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Suresh Senan
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Musielak M, Suchorska WM, Fundowicz M, Milecki P, Malicki J. Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy. J Pers Med 2021; 11:jpm11050410. [PMID: 34068305 PMCID: PMC8153289 DOI: 10.3390/jpm11050410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The toxicity of radiotherapy is a key issue when analyzing the eligibility criteria for patients with breast cancer. In order to obtain better results, proton therapy is proposed because of the more favorable distribution of the dose in the patient’s body compared with photon radiotherapy. Scientific groups have conducted extensive research into the improved efficacy and lower toxicity of proton therapy for breast cancer. Unfortunately, there is no complete insight into the potential reasons and prospects for avoiding undesirable results. Cardiotoxicity is considered challenging; however, researchers have not presented any realistic prospects for preventing them. We compared the clinical evidence collected over the last 20 years, providing the rationale for the consideration of proton therapy as an effective solution to reduce cardiotoxicity. We analyzed the parameters of the dose distribution (mean dose, Dmax, V5, and V20) in organs at risk, such as the heart, blood vessels, and lungs, using the following two irradiation techniques: whole breast irradiation and accelerated partial breast irradiation. Moreover, we presented the possible causes of side effects, taking into account biological and technical issues. Finally, we collected potential improvements in higher quality predictions of toxic cardiac effects, like biomarkers, and model-based approaches to give the full background of this complex issue.
Collapse
Affiliation(s)
- Marika Musielak
- Electro-Radiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.M.S.); (P.M.); (J.M.)
- Greater Poland Cancer Centre, Radiobiology Laboratory, Department of Medical Physics, 61-866 Poznan, Poland
- Correspondence: ; Tel.: +48-505372290
| | - Wiktoria M. Suchorska
- Electro-Radiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.M.S.); (P.M.); (J.M.)
- Greater Poland Cancer Centre, Radiobiology Laboratory, Department of Medical Physics, 61-866 Poznan, Poland
| | | | - Piotr Milecki
- Electro-Radiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.M.S.); (P.M.); (J.M.)
- Greater Poland Cancer Centre, Radiotherapy Ward I, 61-866 Poznan, Poland;
| | - Julian Malicki
- Electro-Radiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.M.S.); (P.M.); (J.M.)
- Greater Poland Cancer Centre, Medical Physics Department, 61-866 Poznan, Poland
| |
Collapse
|
15
|
Emert F, Missimer J, Eichenberger PA, Walser M, Gmür C, Lomax AJ, Weber DC, Spengler CM. Enhanced Deep-Inspiration Breath Hold Superior to High-Frequency Percussive Ventilation for Respiratory Motion Mitigation: A Physiology-Driven, MRI-Guided Assessment Toward Optimized Lung Cancer Treatment With Proton Therapy. Front Oncol 2021; 11:621350. [PMID: 33996545 PMCID: PMC8116693 DOI: 10.3389/fonc.2021.621350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Background: To safely treat lung tumors using particle radiation therapy (PRT), motion-mitigation strategies are of critical importance to ensure precise irradiation. Therefore, we compared applicability, effectiveness, reproducibility, and subjects' acceptance of enhanced deep-inspiration breath hold (eDIBH) with high-frequency percussive ventilation (HFPV) by MRI assessment within 1 month. Methods: Twenty-one healthy subjects (12 males/9 females; age: 49.5 ± 5.8 years; BMI: 24.7 ± 3.3 kg/m−2) performed two 1.5 T MRI scans in four visits at weekly intervals under eDIBH and HFPV conditions, accompanied by daily, home-based breath-hold training and spirometric assessments over a 3-week period. eDIBH consisted of 8-min 100% O2 breathing (3 min resting ventilation, 5 min controlled hyperventilation) prior to breath hold. HFPV was set at 200–250 pulses min−1 and 0.8–1.2 bar. Subjects' acceptance and preference were evaluated by questionnaire. To quantify inter- and intrafractional changes, a lung distance metric representing lung topography was computed for 10 reference points: a motion-invariant spinal cord and nine lung structure contours (LSCs: apex, carina, diaphragm, and six vessels as tumor surrogates distributed equally across the lung). To parameterize individual LSC localizability, measures of their spatial variabilities were introduced and lung volumes calculated by automated MRI analysis. Results: eDIBH increased breath-hold duration by > 100% up to 173 ± 73 s at visit 1, and to 217 ± 67 s after 3 weeks of home-based training at visit 4 (p < 0.001). Measures of vital capacity and lung volume remained constant over the 3-week period. Two vessels in the lower lung segment and the diaphragm yielded a two- to threefold improved positional stability with eDIBH, whereby absolute distance variability was significantly smaller for five LSCs; ≥70% of subjects showed significantly better intrafractional lung motion mitigation under reproducible conditions with eDIBH compared with HFPV with smaller ranges most apparent in the anterior-posterior and cranial-caudal directions. Approximately 80% of subjects preferred eDIBH over HFPV, with “less discomfort” named as most frequent reason. Conclusions: Both, eDIBH, and HFPV were well-tolerated. eDIBH duration was long enough to allow for potential PRT. Variability in lung volume was smaller and position of lung structures more precise with eDIBH. Subjects preferred eDIBH over HFPV. Thus, eDIBH is a very promising tool for lung tumor therapy with PRT, and further investigation of its applicability in patients is warranted.
Collapse
Affiliation(s)
- Frank Emert
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - John Missimer
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Philipp A Eichenberger
- Exercise Physiology Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Celina Gmür
- Exercise Physiology Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Botticella A, Levy A, Auzac G, Chabert I, Berthold C, Le Pechoux C. Tumour motion management in lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:2011-2017. [PMID: 34012810 PMCID: PMC8107759 DOI: 10.21037/tlcr-20-856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory motion is one of the geometrical uncertainties that may affect the accuracy of thoracic radiotherapy in the treatment of lung cancer. Accounting for tumour motion may allow reducing treatment volumes, irradiated healthy tissue and possibly toxicity, and finally enabling dose escalation. Historically, large population-based margins were used to encompass tumour motion. A paradigmatic change happened in the last decades led to the development of modern imaging techniques during the simulation and the delivery, such as the 4-dimensional (4D) computed tomography (CT) or the 4D-cone beam CT scan, has contributed to a better understanding of lung tumour motion and to the widespread use of individualised margins (with either an internal tumour volume approach or a mid-position/ventilation approach). Moreover, recent technological advances in the delivery of radiotherapy treatments (with a variety of commercial solution allowing tumour tracking, gating or treatments in deep-inspiration breath-hold) conjugate the necessity of minimising treatment volumes while maximizing the patient comfort with less invasive techniques. In this narrative review, we provided an introduction on the intra-fraction tumour motion (in both lung tumours and mediastinal lymph-nodes), and summarized the principal motion management strategies (in both the imaging and the treatment delivery) in thoracic radiotherapy for lung cancer, with an eye on the clinical outcomes.
Collapse
Affiliation(s)
- Angela Botticella
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France
| | - Guillaume Auzac
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Isabelle Chabert
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Céline Berthold
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Cécile Le Pechoux
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
17
|
Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers (Basel) 2021; 13:cancers13040604. [PMID: 33546432 PMCID: PMC7913745 DOI: 10.3390/cancers13040604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Proton radiation therapy is a more recent type of radiotherapy that uses proton beams instead of classical photon or X-rays beams. The clinical benefit of proton therapy is that it allows to treat tumors more precisely. As a result, proton radiotherapy induces less toxicity to healthy tissue near the tumor site. Despite the experience in the clinical use of protons, the response of cells to proton radiation, the radiobiology, is less understood. In this review, we describe the current knowledge about proton radiobiology. Abstract Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. Here, we will review the current knowledge of proton radiobiology in terms of induction of reactive oxygen species, hypoxia, DNA damage response, as well as cell death after proton irradiation and radioresistance.
Collapse
|
18
|
Sterpin E, Rivas ST, Van den Heuvel F, George B, Lee JA, Souris K. Development of robustness evaluation strategies for enabling statistically consistent reporting. Phys Med Biol 2021; 66:045002. [PMID: 33296875 DOI: 10.1088/1361-6560/abd22f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Robustness evaluation of proton therapy treatment plans is essential for ensuring safe treatment delivery. However, available evaluation procedures feature a limited exploration of the actual robustness of the plan and generally do not provide confidence levels. This study compared established and more sophisticated robustness evaluation procedures, with quantified confidence levels. We have evaluated several robustness evaluation methods for 5 bilateral head-and-neck patients optimized considering spot scanning delivery and with a conventional CTV-to-PTV margin of 4 mm. Method (1) good practice scenario selection (GPSS) (e.g. +/- 4 mm setup error 3% range uncertainty); (2) statistically sound scenario selection (SSSS) either only on or both on and inside isoprobability hypersurface encompassing 90% of the possible errors; (3) statistically sound dosimetric selection (SSDS). In the last method, the 90% best plans were selected according to either target coverage quantified by D 95 (SSDS_D 95) or to an approximation of the final objective function (OF) used during treatment optimization (SSDS_OF). For all methods, we have considered systematic setup and systematic range errors. A mix of systematic and random setup errors were also simulated for SSDS, but keeping the same conventional margin of 4 mm. All robustness evaluations have been performed using the fast Monte Carlo dose engine MCsquare. Both SSSS strategies yielded on average very similar results. SSSS and GPSS yield comparable values for target coverage (within 0.5 Gy). The most noticeable differences were found for the CTV between GPSS, on the one hand, and SSDS_D 95 and SSDS_OF, on the other hand (average worst-case D 98 were 2.8 and 2.0 Gy larger than for GPSS, respectively). Simulating explicitly random errors in SSDS improved almost all DVH metrics. We have observed that the width of DVH-bands and the confidence levels depend on the method chosen to sample the scenarios. Statistically sound estimation of the robustness of the plan in the dosimetric space may provide an improved insight on the actual robustness of the plan for a given confidence level.
Collapse
Affiliation(s)
- E Sterpin
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Sara T Rivas
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - F Van den Heuvel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Dept of Haematology/Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - B George
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - J A Lee
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - K Souris
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| |
Collapse
|
19
|
Czerska K, Emert F, Kopec R, Langen K, McClelland JR, Meijers A, Miyamoto N, Riboldi M, Shimizu S, Terunuma T, Zou W, Knopf A, Rucinski A. Clinical practice vs. state-of-the-art research and future visions: Report on the 4D treatment planning workshop for particle therapy - Edition 2018 and 2019. Phys Med 2021; 82:54-63. [PMID: 33588228 DOI: 10.1016/j.ejmp.2020.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.
Collapse
Affiliation(s)
- Katarzyna Czerska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Frank Emert
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Katja Langen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Germany
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, Japan; Proton Medical Research Center, University of Tsukuba Hospital, Japan
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
20
|
Thomas M, Defraene G, Levis M, Sterpin E, Lambrecht M, Ricardi U, Haustermans K. A study to investigate the influence of cardiac motion on the robustness of pencil beam scanning proton plans in oesophageal cancer. Phys Imaging Radiat Oncol 2021; 16:50-53. [PMID: 33458343 PMCID: PMC7807867 DOI: 10.1016/j.phro.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022] Open
Abstract
While proton therapy offers an excellent dose conformity and sparing of organs at risk, this can be compromised by uncertainties, e.g. organ motion. This study aimed to investigate the influence of cardiac motion on the contoured oesophagus using electrocardiogram-triggered imaging and to assess the impact of this motion on the robustness of proton therapy plans in oesophageal cancer patients. Limited cardiac-induced motion of the oesophagus was observed with a negligible impact on the robustness of proton therapy plans. Therefore, our data suggest that cardiac motion may be safely ignored in the robust optimisation strategy for proton planning in oesophageal cancer.
Collapse
Affiliation(s)
- Melissa Thomas
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UZ Leuven – University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
- Corresponding author.
| | - Gilles Defraene
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
| | - Mario Levis
- University of Torino, Department of Oncology, Torino, Italy
| | - Edmond Sterpin
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UCLouvain – Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Sint-Lambrechts-Woluwe, Belgium
| | - Maarten Lambrecht
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UZ Leuven – University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | | | - Karin Haustermans
- KU Leuven – University of Leuven, Department of Oncology – Laboratory Experimental Radiotherapy, Leuven, Belgium
- UZ Leuven – University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
21
|
Analytical modeling of depth-dose degradation in heterogeneous lung tissue for intensity-modulated proton therapy planning. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 14:32-38. [PMID: 33458311 PMCID: PMC7807882 DOI: 10.1016/j.phro.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
Background and purpose Proton therapy may be promising for treating non-small-cell lung cancer due to lower doses to the lung and heart, as compared to photon therapy. A reported challenge is degradation, i.e., a smoothing of the depth-dose distribution due to heterogeneous lung tissue. For pencil beams, this causes a distal falloff widening and a peak-to-plateau ratio decrease, not considered in clinical treatment planning systems. Materials and methods We present a degradation model implemented into an analytical dose calculation, fully integrated into a treatment planning workflow. Degradation effects were investigated on target dose, distal dose falloffs, and mean lung dose for ten patient cases with varying anatomical characteristics. Results For patients with pronounced range straggling (in our study large tumors, or lesions close to the mediastinum), degradation effects were restricted to a maximum decrease in target coverage (D 95 of the planning target volume) of 1.4%. The median broadening of the distal 80-20% dose falloffs was 0.5 mm at the maximum. For small target volumes deep inside lung tissue, however, the target underdose increased considerably by up to 26%. The mean lung dose was not negatively affected by degradation in any of the investigated cases. Conclusion For most cases, dose degradation due to heterogeneous lung tissue did not yield critical organ at risk overdosing or overall target underdosing. However, for small and deep-seated tumors which can only be reached by penetrating lung tissue, we have seen substantial local underdose, which deserves further investigation, also considering other prevalent sources of uncertainty.
Collapse
|
22
|
Lee E, Perry D, Speth J, Zhang Y, Xiao Z, Mascia A. Measurement-based study on characterizing symmetric and asymmetric respiratory motion interplay effect on target dose distribution in the proton pencil beam scanning. J Appl Clin Med Phys 2020; 21:59-67. [PMID: 32170992 PMCID: PMC7170285 DOI: 10.1002/acm2.12846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
Pencil beam scanning proton therapy makes possible intensity modulation, resulting in improved target dose conformity and organ‐at‐risk (OAR) dose sparing. This benefit, however, results in increased sensitivity to certain clinical and beam delivery parameters, such as respiratory motion. These effects can cause plan degeneration, which could lead to decreased tumor dose or increased OAR dose. This study evaluated the measurements of proton pencil beam scanning delivery made with a 2D ion chamber array in solid water on a 1D motion platform, where respiratory motion was simulated using sine and cosine4 waves representing sinusoidal symmetric and realistic asymmetric breathing motions, respectively. Motion amplitudes were 0.5 cm and 1 cm corresponding to 1 cm and 2 cm of maximum respiratory excursions, respectively, with 5 sec fixed breathing cycle. The treatment plans were created to mimic spherical targets of 3 cm or 10 cm diameter located at 5 cm or 1 cm depth in solid water phantom. A reference RBE dose of 200 cGy per fraction was delivered in 1, 5, 10, and 15 fractions for each dataset. We evaluated dose conformity and uniformity at the center plane of targets by using the Conformation Number and the Homogeneity Index, respectively. Results indicated that dose conformity as well as homogeneity was more affected by motion for smaller targets. Dose conformity was better achieved for symmetric breathing patterns than asymmetric breathing patterns regardless of the number of fractions. The presence of a range shifter with shallow targets reduced the motion effect by improving dose homogeneity. While motion effects are known to be averaged out over the course of multifractional treatments, this might not be true for proton pencil beam scanning under asymmetrical breathing pattern.
Collapse
Affiliation(s)
- Eunsin Lee
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Perry
- Department of Radiation Oncology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Joseph Speth
- Department of Radiation Oncology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yongbin Zhang
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhiyan Xiao
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
23
|
Wang P, Tang S, Leach K, Mangona V, Simone CB, Langen K, Chang C. Proton pencil beam scanning treatment with feedback based voluntary moderate breath hold. Med Dosim 2019; 45:e10-e15. [PMID: 31870600 DOI: 10.1016/j.meddos.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022]
Abstract
Introduction The aim of this article is to introduce a novel protocol for proton pencil beam scanning treatment with moderate deep inspiration breath hold (mDIBH) and report on our clinical implementation results. Methods Three computed tomography (CT) scannings to build the patient's anatomy model were performed during the patient's voluntary mDIBH. All 3 CT scans were used in the optimization during the treatment planning process. Both orthogonal kV imaging and cone-beam computed tomography (CBCT) were implemented for patient alignment with BH prior to the treatment. The BH CBCT images were analyzed for BH reproducibility and the virtual total dose (VTD) retrospectively. To find the VTD, a series of deformable image registrations (DIR) were performed between CBCT and pCT. The effect of the variation of lung density on the dose distribution was also analyzed in the study. Results The values of the mean, standard deviation, maximum, and minimum of the tumor location difference between the CBCT and pCT were 1.9, 1.6, 4.7, and 0.0 mm, respectively. The percentage difference in D99% of CTVs between VTD and the nominal plan was within 1.5%. Conclusions The feedback-based voluntary moderate BH proton PBS treatment was successfully performed in our clinic. This study shows that there is a potential to implement the BH treatment widely in proton centers.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiation Oncology, Inova Health System, Falls Church, VA, USA.
| | - Shikui Tang
- Texas Center for Proton Therapy, Irving, TX, USA
| | - Karla Leach
- Texas Center for Proton Therapy, Irving, TX, USA
| | | | | | | | - Chang Chang
- California Protons Ca Therapy Center, San Diego, CA, USA
| |
Collapse
|
24
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
25
|
Niepel K, Kamp F, Kurz C, Hansen D, Rit S, Neppl S, Hofmaier J, Bondesson D, Thieke C, Dinkel J, Belka C, Parodi K, Landry G. Feasibility of 4DCBCT-based proton dose calculation: An ex vivo porcine lung phantom study. Z Med Phys 2019; 29:249-261. [DOI: 10.1016/j.zemedi.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/06/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022]
|
26
|
Flatten V, Baumann KS, Weber U, Engenhart-Cabillic R, Zink K. Quantification of the dependencies of the Bragg peak degradation due to lung tissue in proton therapy on a CT-based lung tumor phantom. Phys Med Biol 2019; 64:155005. [PMID: 31151126 DOI: 10.1088/1361-6560/ab2611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fine, sub-millimeter sized structure of lung tissue causes a degradation of the Bragg peak curve in particle therapy. The Bragg peak is degraded because particles of the same energy traverse lung tissue of different compositions of high and low density materials. Hence, they experience different energy losses resulting in variable ranges and a broadened Bragg peak. Since this fine structure of lung tissue is not resolved in standard treatment-planning CTs, current state-of-the-art dose calculation procedures used in the clinical routine are unable to account for this degradation. Neglecting this Bragg peak degradation in treatment planning can lead to an underdose in the target volume and an overdose distal to the target. Aim of this work is to systematically investigate the potential effects of the Bragg peak degradation on the dose distribution in dependence of different parameters like the tumor volume and its depth in lung. Proton plans were optimized on CT based phantoms without considering the Bragg peak degradation and afterwards recalculated with the Monte Carlo toolkit TOPAS: first, without consideration of the degradation and second, with the Bragg peak degradation accounted for. The direct comparison of these two dose distributions enables a quantification of the degradation effect. To carve out the dependencies of various parameters that could influence the Bragg peak degradation and thus the target dose, the simulations were performed for a variety of tumor sizes and shapes, as well as different positions within the lung. The results show that due to the Bragg peak degradation the mean dose in the target volume can be reduced by a few percent up to 14% (for extreme cases) depending on the geometry. It was shown that this effect increases with a decreasing tumor volume and increasing depth of the tumor. For the first time, a tumor specific estimation of the effect on the dose distribution due to the Bragg peak degradation in lung tissue is presented.
Collapse
Affiliation(s)
- Veronika Flatten
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany. Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
27
|
Liu Y, Lei Y, Wang Y, Wang T, Ren L, Lin L, McDonald M, Curran WJ, Liu T, Zhou J, Yang X. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys Med Biol 2019; 64:145015. [PMID: 31146267 PMCID: PMC6635951 DOI: 10.1088/1361-6560/ab25bc] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Magnetic resonance imaging (MRI) has been widely used in combination with computed tomography (CT) radiation therapy because MRI improves the accuracy and reliability of target delineation due to its superior soft tissue contrast over CT. The MRI-only treatment process is currently an active field of research since it could eliminate systematic MR-CT co-registration errors, reduce medical cost, avoid diagnostic radiation exposure, and simplify clinical workflow. The purpose of this work is to validate the application of a deep learning-based method for abdominal synthetic CT (sCT) generation by image evaluation and dosimetric assessment in a commercial proton pencil beam treatment planning system (TPS). This study proposes to integrate dense block into a 3D cycle-consistent generative adversarial networks (cycle GAN) framework in an effort to effectively learn the nonlinear mapping between MRI and CT pairs. A cohort of 21 patients with co-registered CT and MR pairs were used to test the deep learning-based sCT image quality by leave-one-out cross validation. The CT image quality, dosimetric accuracy and the distal range fidelity were rigorously checked, using side-by-side comparison against the corresponding original CT images. The average mean absolute error (MAE) was 72.87 ± 18.16 HU. The relative differences of the statistics of the PTV dose volume histogram (DVH) metrics between sCT and CT were generally less than 1%. Mean 3D gamma analysis passing rate of 1 mm/1%, 2 mm/2%, 3 mm/3% criteria with 10% dose threshold were 90.76% ± 5.94%, 96.98% ± 2.93% and 99.37% ± 0.99%, respectively. The median, mean and standard deviation of absolute maximum range differences were 0.170 cm, 0.186 cm and 0.155 cm. The image similarity, dosimetric and distal range agreement between sCT and original CT suggests the feasibility of further development of an MRI-only workflow for liver proton radiotherapy.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Lei Ren
- Department of Radiation Oncology, Duke University, Durham, NC 27708
| | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Mark McDonald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
28
|
Buonanno M, Grilj V, Brenner DJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol 2019; 139:51-55. [PMID: 30850209 DOI: 10.1016/j.radonc.2019.02.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiotherapy outcomes are limited by toxicity in the healthy tissues surrounding the irradiated tumor. Recent pre-clinical studies have shown that irradiations with electrons or photons delivered at so called FLASH dose rates (i.e. >40 Gy/s) dramatically reduce adverse side effects in the normal tissues while being equally efficient for tumor control as irradiations at conventional dose rates (3-5 cGy/s). In the case of protons however, FLASH effects have not been investigated partially because of the limited availability of facilities that can achieve such high dose rates. METHODS Using a novel irradiation platform, we measured acute and long-term biological effects in normal human lung fibroblasts (IMR90) exposed to therapeutically relevant doses of 4.5 MeV protons (LET = 10 keV/µm) delivered at dose rates spanning four orders of magnitude. Endpoints included clonogenic cell survival, γH2AX foci formation, induction of premature senescence (β-gal), and the expression of the pro-inflammatory marker TGFβ. RESULTS Proton dose rate had no influence on the cell survival, but for the highest dose rate used (i.e. 1000 Gy/s) foci formation saturated beyond 10 Gy. In the progeny of irradiated cells, an increase in dose (20 Gy vs. 10 Gy) and dose rate (1000 Gy/s vs. 0.05 Gy/s) positively affected the number of senescence cells and the expression of TGFβ1. CONCLUSIONS In normal lung fibroblasts proton dose rate had little impact on acute effects, but significantly influenced the expression of long-term biological responses in vitro. Compared to conventional dose rates, protons delivered at FLASH dose rates mitigated such delayed detrimental effects.
Collapse
Affiliation(s)
- Manuela Buonanno
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| | - Veljko Grilj
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| | - David J Brenner
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| |
Collapse
|
29
|
Fracchiolla F, Dionisi F, Giacomelli I, Hild S, Esposito PG, Lorentini S, Engwall E, Amichetti M, Schwarz M. Implementation of proton therapy treatments with pencil beam scanning of targets with limited intrafraction motion. Phys Med 2019; 57:215-220. [DOI: 10.1016/j.ejmp.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
|
30
|
Placidi L, Togno M, Weber DC, Lomax AJ, Hrbacek J. Range resolution and reproducibility of a dedicated phantom for proton PBS daily quality assurance. Z Med Phys 2018; 28:310-317. [DOI: 10.1016/j.zemedi.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 10/17/2022]
|
31
|
Boria AJ, Uh J, Pirlepesov F, Stuckey JC, Axente M, Gargone MA, Hua CH. Interplay Effect of Target Motion and Pencil-Beam Scanning in Proton Therapy for Pediatric Patients. Int J Part Ther 2018; 5:1-10. [PMID: 30800718 PMCID: PMC6383772 DOI: 10.14338/ijpt-17-00030.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose: To investigate the effect of interplay between spot-scanning proton beams and respiration-induced tumor motion on internal target volume coverage for pediatric patients. Materials and Methods: Photon treatments for 10 children with representative tumor motions (1–13 mm superior-inferior) were replanned to simulate single-field uniform dose–optimized proton therapy. Static plans were designed by using average computed tomography (CT) data sets created from 4D CT data to obtain nominal dose distributions. The motion interplay effect was simulated by assigning each spot in the static plan delivery sequence to 1 of 10 respiratory-phase CTs, using the actual patient breathing trace and specifications of a synchrotron-based proton system. Dose distributions for individual phases were deformed onto the space of the average CT and summed to produce the accumulated dose distribution, whose dose-volume histogram was compared with the one from the static plan. Results: Tumor motion had minimal impact on the internal target volume hot spot (D2), which deviated by <3% from the nominal values of the static plans. The cold spot (D98) was also minimally affected, except in 2 patients with diaphragmatic tumor motion exceeding 10 mm. The impact on tumor coverage was more pronounced with respect to the V99 rather than the V95. Decreases of 10% to 49% in the V99 occurred in multiple patients for whom the beam paths traversed the lung-diaphragm interface and were, therefore, more sensitive to respiration-induced changes in the water equivalent path length. Fractionation alone apparently did not mitigate the interplay effect beyond 6 fractions. Conclusion: The interplay effect is not a concern when delivering scanning proton beams to younger pediatric patients with tumors located in the retroperitoneal space and tumor motion of <5 mm. Children and adolescents with diaphragmatic tumor motion exceeding 10 mm require special attention, because significant declines in target coverage and dose homogeneity were seen in simulated treatments of such patients.
Collapse
Affiliation(s)
- Andrew J Boria
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.,School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Fakhriddin Pirlepesov
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James C Stuckey
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Physics, Rhodes College, Memphis, TN, USA
| | - Marian Axente
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa A Gargone
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
32
|
Chartier L, Tran LT, Bolst D, Guatelli S, Pogossov A, Prokopovich DA, Reinhard MI, Perevertaylo V, Anderson S, Beltran C, Matsufuji N, Jackson M, Rosenfeld AB. MICRODOSIMETRIC APPLICATIONS IN PROTON AND HEAVY ION THERAPY USING SILICON MICRODOSIMETERS. RADIATION PROTECTION DOSIMETRY 2018; 180:365-371. [PMID: 29069515 DOI: 10.1093/rpd/ncx226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Using the CMRP 'bridge' μ+ probe, microdosimetric measurements were undertaken out-of-field using a therapeutic scanning proton pencil beam and in-field using a 12C ion therapy field. These measurements were undertaken at Mayo Clinic, Rochester, USA and at HIMAC, Chiba, Japan, respectively. For a typical proton field used in the treatment of deep-seated tumors, we observed dose-equivalent values ranging from 0.62 to 0.99 mSv/Gy at locations downstream of the distal edge. Lateral measurements at depths close to the entrance and along the SOBP plateau were found to reach maximum values of 3.1 mSv/Gy and 5.3 mSv/Gy at 10 mm from the field edge, respectively, and decreased to ~0.04 mSv/Gy 120 mm from the field edge. The ability to measure the dose-equivalent with high spatial resolution is particularly relevant to healthy tissue dose calculations in hadron therapy treatments. We have also shown qualitatively and quantitively the effects critical organ motion would have in treatment using microdosimetric spectra. Large differences in spectra and RBE10 were observed for treatments where miscalculations of 12C ion range would result in critical structures being irradiated, showing the importance of motion management.
Collapse
Affiliation(s)
- L Chartier
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - L T Tran
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - D Bolst
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - S Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - A Pogossov
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - D A Prokopovich
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Ionising Radiation, Nuclear Stewardship Platform, NSTLI, ANSTO, Lucas Heights, NSW, Australia
| | - M I Reinhard
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Ionising Radiation, Nuclear Stewardship Platform, NSTLI, ANSTO, Lucas Heights, NSW, Australia
| | | | - S Anderson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - C Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - N Matsufuji
- National Institute for Quantum and Radiological Science and Technology, Japan
| | - M Jackson
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - A B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
33
|
Schellhammer SM, Gantz S, Lühr A, Oborn BM, Bussmann M, Hoffmann AL. Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy. Med Phys 2018; 45:3429-3434. [PMID: 29763970 DOI: 10.1002/mp.12961] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Given its sensitivity to anatomical variations, proton therapy is expected to benefit greatly from integration with magnetic resonance imaging for online anatomy monitoring during irradiation. Such an integration raises several challenges, as both systems mutually interact. The proton beam will experience quasi-continuous energy loss and energy-dependent electromagnetic deflection at the same time, giving rise to a deflected beam trajectory and an altered dose distribution with a displaced Bragg peak. So far, these effects have only been predicted using Monte Carlo and analytical models, but no clear consensus has been reached and experimental benchmark data are lacking. We measured proton beam trajectories and Bragg peak displacement in a homogeneous phantom placed inside a magnetic field and compared them to simulations. METHODS Planar dose distributions of proton pencil beams (80-180 MeV) traversing the field of a 0.95 T NdFeB permanent magnet while depositing energy in a PMMA slab phantom were measured using EBT3 radiochromic films and simulated using the Geant4 toolkit. Deflected beam trajectories and the Bragg peak displacement were extracted from the measured planar dose distributions and compared against the simulations. RESULTS The lateral beam deflection was clearly visible on the EBT3 films and ranged from 1 to 10 mm for 80 to 180 MeV, respectively. Simulated and measured beam trajectories and Bragg peak displacement agreed within 0.8 mm for all studied proton energies. CONCLUSIONS These results prove that the magnetic field-induced Bragg peak displacement is both measurable and accurately predictable in a homogeneous phantom at 0.95 T, and allows Monte Carlo simulations to be used as gold standard for proton beam trajectory prediction in similar frameworks for MR-integrated proton therapy.
Collapse
Affiliation(s)
- Sonja M Schellhammer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany
| | - Sebastian Gantz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Bradley M Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, 2522, Australia
| | - Michael Bussmann
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany
| | - Aswin L Hoffmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| |
Collapse
|
34
|
Pfeiler T, Bäumer C, Engwall E, Geismar D, Spaan B, Timmermann B. Experimental validation of a 4D dose calculation routine for pencil beam scanning proton therapy. Z Med Phys 2018; 28:121-133. [DOI: 10.1016/j.zemedi.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
|
35
|
Jakobi A, Perrin R, Knopf A, Richter C. Feasibility of proton pencil beam scanning treatment of free-breathing lung cancer patients. Acta Oncol 2018; 57:203-210. [PMID: 28760089 DOI: 10.1080/0284186x.2017.1355107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The interplay effect might degrade the dose of pencil beam scanning proton therapy to a degree that free-breathing treatment might be impossible without further motion mitigation techniques, which complicate and prolong the treatment. We assessed whether treatment of free-breathing patients without motion mitigation is feasible. MATERIAL AND METHODS For 40 lung cancer patients, 4DCT datasets and individual breathing patterns were used to simulate 4D dynamic dose distributions of 3D treatment plans over 33 fractions delivered with an IBA universal nozzle. Evaluation was done by assessing under- and overdosage in the target structure using the parameters V90, V95, V98, D98, D2, V107 and V110. The impact of using beam-specific target volumes and the impact of changes in motion and patient anatomy in control 4DCTs were assessed. RESULTS Almost half of the patients had tumour motion amplitudes of less than 5 mm. Under- and overdosage was significantly smaller for patients with tumour motion below 5 mm compared to patients with larger motion (2% vs. 13% average absolute reduction of V95, 2% vs. 8% average increase in V107, p < .01). Simulating a 33-fraction treatment, the dose degradation was reduced but persisted for patients with tumour motion above 5 mm (average ΔV95 of <1% vs. 3%, p < .01). Beam-specific target volumes reduced the dose degradation in a fractionated treatment, but were more relevant for large motion. Repeated 4DCT revealed that changes in tumour motion during treatment might result in unexpected large dose degradations. CONCLUSION Tumour motion amplitude is an indicator of dose degradation caused by the interplay effect. Fractionation reduces the dose degradation allowing the unmitigated treatment of patients with small tumour motions of less than 5 mm. The beam-specific target approach improves the dose coverage. The tumour motion and position needs to be assessed during treatment for all patients, to quickly react to possible changes, which might require treatment adaptation.
Collapse
Affiliation(s)
- Annika Jakobi
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Rosalind Perrin
- Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland
| | - Antje Knopf
- Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Altobelli E, Amichetti M, Langiu A, Marzi F, Mignosi F, Pisciotta P, Placidi G, Rossi F, Russo G, Schwarz M. Combinatorial optimisation in radiotherapy treatment planning. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.3.204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
37
|
Respiratory Motion Modelling Using cGANs. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION – MICCAI 2018 2018. [DOI: 10.1007/978-3-030-00937-3_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Dreher C, Habermehl D, Jäkel O, Combs SE. Effective radiotherapeutic treatment intensification in patients with pancreatic cancer: higher doses alone, higher RBE or both? Radiat Oncol 2017; 12:203. [PMID: 29282139 PMCID: PMC5745986 DOI: 10.1186/s13014-017-0945-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, especially in case of locally advanced stage has a poor prognosis. Radiotherapy in general can lead to tumor volume reduction, but further improvements, such as ion beam therapy have to be promoted in order to enable dose escalation, which in turn results in better local control rates and downsizing of the tumor itself. Ion beam therapy with its highly promising physical properties is also accompanied by distinct inter- and intrafractional challenges in case of robustness. First clinical results are promising, but further research in motion mitigation and biological treatment planning is necessary, in order to determine the best clinical rationales and conditions of ion beam therapy of pancreatic cancer. This review summarizes the current knowledge and studies on ion beam therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, INF, 280 Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), INF 450, 69120 Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| |
Collapse
|
39
|
Bert C, Herfarth K. Management of organ motion in scanned ion beam therapy. Radiat Oncol 2017; 12:170. [PMID: 29110693 PMCID: PMC5674859 DOI: 10.1186/s13014-017-0911-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Scanned ion beam therapy has special demands for treatment of intra-fractionally moving tumors such as lesions in lung or liver. Interplay effects between beam and organ motion can in those settings lead to under-dosage of the target volume. Dedicated treatment techniques such as gating or abdominal compression are required. In addition 4D treatment planning should be used to determine strategies for patient specific treatment planning such as an increased beam focus or the use of internal target volumes incorporating range changes.Several work packages of the Clinical Research Units 214 and 214/2 funded by the German Research Council investigated the management of organ motion in scanned ion beam therapy. A focus was laid on 4D treatment planning using TRiP4D and the development of motion mitigation strategies including their quality assurance. This review focuses on the activity in the second funding period covering adaptive treatment planning strategies, 4D treatment plan optimization, and the application of motion management in pre-clinical research on radiation therapy of cardiac arrhythmias.
Collapse
Affiliation(s)
- Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Sci Rep 2016; 6:38895. [PMID: 27996023 PMCID: PMC5171237 DOI: 10.1038/srep38895] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40–55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conduction.
Collapse
|
41
|
Sterpin E, Barragan A, Souris K, Lee JA. [Robust treatment planning in proton therapy]. Cancer Radiother 2016; 20:523-9. [PMID: 27614528 DOI: 10.1016/j.canrad.2016.07.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Abstract
The concentration of the dose delivered by protons at the end of their path, the Bragg peak, has the potential to improve external radiotherapy treatments. Unfortunately, the main strength of the protons, their finite range, is also their greatest weakness. Any uncertainty on the range may lead to inadequate target coverage or excessive toxicity. The uncertainties have multiple origins and include, among others, ballistic errors, morphological modifications or inaccurate estimations of the physical quantities necessary to predict the proton range. Uncertainties have been part of daily practice in conventional radiotherapy with X-rays for a long time. However, dose distributions delivered with X-rays are much less sensitive to uncertainties than the ones delivered with protons. This relative insensitivity enabled the management of uncertainties through safety margins using a simple formalism. The conditions of validity of this formalism are much more restrictive for proton therapy, leading to the need of developing new tools and adapted strategies to manage accurately these uncertainties. The objective of this paper is to present a vision for the management of uncertainties in proton therapy in the continuity of formalisms established for X-rays. The latter are first summarized before discussing the necessary developments in order to consistently apply them to protons.
Collapse
Affiliation(s)
- E Sterpin
- Katholieke Universiteit Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, O&N I Herestraat 49, 3000 Leuven, Belgique; Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, institut de recherche expérimentale et clinique, avenue Hippocrate 54, 1200 Brussels, Belgique.
| | - A Barragan
- Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, institut de recherche expérimentale et clinique, avenue Hippocrate 54, 1200 Brussels, Belgique
| | - K Souris
- Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, institut de recherche expérimentale et clinique, avenue Hippocrate 54, 1200 Brussels, Belgique
| | - J A Lee
- Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, institut de recherche expérimentale et clinique, avenue Hippocrate 54, 1200 Brussels, Belgique
| |
Collapse
|
42
|
Required transition from research to clinical application: Report on the 4D treatment planning workshops 2014 and 2015. Phys Med 2016; 32:874-82. [DOI: 10.1016/j.ejmp.2016.05.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
|