1
|
Luo J, Zhang H, Liu Z, Zhang Z, Pan Y, Liang X, Wu S, Xu H, Xu S, Jiang C. A review of regeneration mechanism and methods for reducing soot emissions from diesel particulate filter in diesel engine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86556-86597. [PMID: 37421534 DOI: 10.1007/s11356-023-28405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
With the global emphasis on environmental protection and the proposal of the climate goal of "carbon neutrality," countries around the world are calling for reductions in carbon dioxide, nitrogen oxide, and particulate matter pollution. These pollutants have severe impacts on human lives and should be effectively controlled. Engine exhaust is the most serious pollution source, and diesel engine is an important contributor to particulate matter. Diesel particulate filter (DPF) technology has proven to be an effective technology for soot control at the present and in the future. Firstly, the exacerbating effect of particulate matter on human infectious disease viruses is discussed. Then, the latest developments in the influence of key factors on DPF performance are reviewed at different observation scales (wall, channel, and entire filter). In addition, current soot catalytic oxidant schemes are presented in the review, and the significance of catalyst activity and soot oxidation kinetic models are highlighted. Finally, the areas that need further research are determined, which has important guiding significance for future research. Current catalytic technologies are focused on stable materials with high mobility of oxidizing substances and low cost. The challenge of DPF optimization design is to accurately calculate the balance between soot and ash load, DPF regeneration control strategy, and exhaust heat management strategy.
Collapse
Affiliation(s)
- Jianbin Luo
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Haiguo Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhonghang Liu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhiqing Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China.
| | - Yajuan Pan
- School of Mechanical Engineering, Liuzhou Institute of Technology, Liuzhou, 545616, China
| | - Xiguang Liang
- Liuzhou Jindongfang Automotive Parts Co., Ltd., Liuzhou, 545036, China
| | - Shizhuo Wu
- Liuzhou Branch, Aisn AUTO R&D Co., Ltd., Liuzhou, 545616, China
| | - Hongxiang Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Song Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Chunmei Jiang
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
2
|
Zhang Z, Dong R, Lan G, Yuan T, Tan D. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39338-39376. [PMID: 36750514 PMCID: PMC9905014 DOI: 10.1007/s11356-023-25579-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Diesel particulate filter (DPF) is considered as an effective method to control particulate matter (PM) emissions from diesel engines, which is included in the mandatory installation list by more and more national/regional laws and regulations, such as CHINA VI, Euro VI, and EPA Tier3. Due to the limited capacity of DPF to contain PM, the manufacturer introduced a method of treating deposited PM by oxidation, which is called regeneration. This paper comprehensively summarizes the most advanced regeneration technology, including filter structure, new catalyst formula, accurate soot prediction, safe and reliable regeneration strategy, uncontrolled regeneration and its control methods. In addition, due to the change of working conditions in the regeneration process, the additional emissions during regeneration are discussed in this paper. The DPF is not only the aftertreatment device but also can be combined with diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) and exhaust recirculation (EGR). In addition, the impact of DPF modification on the original system of some old models has been reasonably discussed in order to achieve emission targets.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Research Center of Guangxi Industry High-Quality Development, Guangxi University of Science and Technology, Liuzhou, 545006, China
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- School of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Rui Dong
- Research Center of Guangxi Industry High-Quality Development, Guangxi University of Science and Technology, Liuzhou, 545006, China
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guanglin Lan
- School of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Tao Yuan
- Purchasing Department, SAIC GM Wuling Automobile Co., Ltd, Liuzhou, 545007, China
| | - Dongli Tan
- Research Center of Guangxi Industry High-Quality Development, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
3
|
The influence of complexing agents on the cobalt-based catalysts properties and activities. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Zhang F, Zhu X, Wu H, Wu X, Zhou Z, Chen G, Yang G. Activity and Stability of Cu‐Based Spinel‐Type Complex Oxides for Diesel Soot Combustion. ChemistrySelect 2021. [DOI: 10.1002/slct.202102899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Zhang
- Faculty of Maritime and Transportation Ningbo University 169# Qixing South Road, Beilun District Ningbo Zhejiang Province 315211 China
| | - Xinbo Zhu
- Faculty of Maritime and Transportation Ningbo University 169# Qixing South Road, Beilun District Ningbo Zhejiang Province 315211 China
| | - Hanpeng Wu
- Faculty of Maritime and Transportation Ningbo University 169# Qixing South Road, Beilun District Ningbo Zhejiang Province 315211 China
| | - Xiqiang Wu
- Faculty of Maritime and Transportation Ningbo University 169# Qixing South Road, Beilun District Ningbo Zhejiang Province 315211 China
| | - Zijian Zhou
- State Key Laboratory of Coal Combustion School of Energy and Power Engineering Huazhong University of Science and Technology 1037# Luoyu Road, Hongshan District Wuhan Hubei province 430074 China
| | - Geng Chen
- Faculty of Maritime and Transportation Ningbo University 169# Qixing South Road, Beilun District Ningbo Zhejiang Province 315211 China
| | - Guohua Yang
- Faculty of Maritime and Transportation Ningbo University 169# Qixing South Road, Beilun District Ningbo Zhejiang Province 315211 China
| |
Collapse
|
5
|
Téllez-Salazar W, Ovalle-Encinia O, Ramírez-Rosales D, Ma X, Dorantes-Rosales H, Lara-García H, Ortiz-Landeros J. Chemical synthesis and evaluation of Co3O4/Ce0.9Zr0.05Y0.05O2-δ mixed oxides for the catalytic-assisted combustion of soot. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Laishram D, Krishnapriya R, Saini B, Gupta U, Soni VK, Sharma RK. Nickel and cobalt transfigured natural clay: a green catalyst for low-temperature catalytic soot oxidation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01346g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modified 'natural clay' with Ni and Co nanoparticles explored as efficient catalyst for low-temperature soot oxidation activity studies.
Collapse
Affiliation(s)
- Devika Laishram
- Sustainable Materials and Catalysis Research Laboratory (SMCRL)
- Department of Chemistry
- Indian Institute of Technology
- Karwar
- India
| | - R. Krishnapriya
- Sustainable Materials and Catalysis Research Laboratory (SMCRL)
- Department of Chemistry
- Indian Institute of Technology
- Karwar
- India
| | - Bhagirath Saini
- Sustainable Materials and Catalysis Research Laboratory (SMCRL)
- Department of Chemistry
- Indian Institute of Technology
- Karwar
- India
| | - Unnati Gupta
- Sustainable Materials and Catalysis Research Laboratory (SMCRL)
- Department of Chemistry
- Indian Institute of Technology
- Karwar
- India
| | - Vineet K. Soni
- Sustainable Materials and Catalysis Research Laboratory (SMCRL)
- Department of Chemistry
- Indian Institute of Technology
- Karwar
- India
| | - Rakesh K. Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL)
- Department of Chemistry
- Indian Institute of Technology
- Karwar
- India
| |
Collapse
|
7
|
Promotional effect of nickel addition on soot oxidation activity of Ce0.9Pr0.1O2 oxide catalysts. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01275-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|