1
|
Guo F, Wang Y, Jiang Z, Tu Y, Li R, Zhang X, Tang A, Liang Y, Yan L, Luo H, Li S, Kong L. Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst. Molecules 2025; 30:1457. [PMID: 40286041 PMCID: PMC11990729 DOI: 10.3390/molecules30071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
The catalytic production of lactic acid from carbohydrates was considered a green way to efficiently utilize renewable biomass resources. In this study, an easy post-synthesis method was used to prepare a Sn-Beta catalyst for the production of lactic acid from glucose at 180 °C, 2 MPa, and 30 min. With optimized reaction time, temperature, pressure, and the ratio of raw material to catalyst, the yield of lactic acid reached an astonishingly high level of 76.0%. In addition, the catalyst characterizations were performed in-depth, revealing the intrinsic relationship between catalyst performance and structure, proving that the 2 wt% Sn was uniformly dispersed in the skeleton of Beta zeolite, which significantly increased the density of Lewis acid. Thus, the enhanced isomerization and retro-aldol condensation processes over the Lewis acid sites led to the high yield of lactic acid. This catalytic system kept stable after five cycles at mild conditions, showing high potential for industrial biomass utilization.
Collapse
Affiliation(s)
- Fenfen Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Yuxuan Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Zhicheng Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Youjing Tu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Ruikai Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Xingyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Aoyi Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Yuan Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| | - Lishi Yan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Lingzhao Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (F.G.); (Y.W.); (Z.J.); (Y.T.); (R.L.); (X.Z.); (A.T.); (Y.L.)
| |
Collapse
|
2
|
Gundekari S, Karmee SK. Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review. Molecules 2024; 29:242. [PMID: 38202825 PMCID: PMC10780552 DOI: 10.3390/molecules29010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Biomass-derived furanics play a pivotal role in chemical industries, with 2-methyltetrahydrofuran (2-MTHF), a hydrogenated product of levulinic acid (LA), being particularly significant. 2-MTHF finds valuable applications in the fuel, polymer, and chemical sectors, serving as a key component in P-series biofuel and acknowledged as a renewable solvent for various chemical processes. Numerous research groups have explored catalytic systems to efficiently and selectively convert LA to 2-MTHF, using diverse metal-supported catalysts in different solvents under batch or continuous process conditions. This comprehensive review delves into the impact of metal-supported catalysts, encompassing co-metals and co-catalysts, on the synthesis of 2-MTHF from LA. The article also elucidates the influence of different reaction parameters, such as temperature, type and quantity of hydrogen source, and time. Furthermore, the review provides insights into reaction mechanisms for all documented catalytic systems.
Collapse
Affiliation(s)
- Sreedhar Gundekari
- Department of Engineering Chemistry, Koneru Lakshmaiah Education Foundation, KL (Deemed to be) University, R.V.S Nagar, Moinabad-Chilkur Rd, Aziznagar 500075, Telangana, India
| | - Sanjib Kumar Karmee
- The Odisha Renewable Energy Research Institute (ORERI), Subarnapur 767018, Odisha, India
| |
Collapse
|
3
|
Mero A, Koutsoumpos S, Giannios P, Stavrakas I, Moutzouris K, Mezzetta A, Guazzelli L. Comparison of physicochemical and thermal properties of choline chloride and betaine-based deep eutectic solvents: the influence of hydrogen bond acceptor and hydrogen bond donor nature and their molar ratios. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Wu Y, Wang H, Peng J, Ding M. Advances in catalytic valorization of cellulose into value-added chemicals and fuels over heterogeneous catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
New EK, Tnah SK, Voon KS, Yong KJ, Procentese A, Yee Shak KP, Subramonian W, Cheng CK, Wu TY. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114385. [PMID: 35104699 DOI: 10.1016/j.jenvman.2021.114385] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.
Collapse
Affiliation(s)
- Eng Kein New
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shen Khang Tnah
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Shing Voon
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Undergraduate Research Opportunities Program (UROP), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Jie Yong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Alessandra Procentese
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor Darul Ehsan, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Wennie Subramonian
- School of Computing, Engineering & Design Technologies, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, United Kingdom
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
8
|
MARASCA N, BRITO MR, RAMBO MCD, PEDRAZZI C, SCAPIN E, RAMBO MKD. Analysis of the potential of cupuaçu husks (Theobroma grandiflorum) as raw material for the synthesis of bioproducts and energy generation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.48421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Elisandra SCAPIN
- Universidade Federal do Tocantins, Brasil; Universidade Federal do Tocantins, Brasil
| | | |
Collapse
|
9
|
Reaction Kinetics of Levulinic Acid Synthesis from Glucose Using Bronsted Acid Catalyst. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.12197.904-915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucose is one of the primary derivative products from lignocellulosic biomass, which is abundantly available. Glucose has excellent potential to be converted into valuable compounds such as ethanol, sorbitol, gluconic acid, and levulinic acid (LA). Levulinic acid is an exceptionally promising green platform chemical. It comprises two functional groups, ketone and carboxylate, acting as highly reactive electrophiles for a nucleophilic attack. Therefore, it has extensive applications, including fuel additives, raw materials for the pharmaceutical industry, and cosmetics. This study reports the reaction kinetics of LA synthesis from glucose catalyzed by hydrochloric acid (HCl), a Bronsted acid, that was carried out under a wide range of operating conditions; i.e. the temperature of 140–180 °C, catalyst concentration of 0.5–1.5 M, and initial glucose concentration of 0.1–0.5 M. The highest LA yield of 48.34 % was able to be obtained from an initial glucose concentration of 0.1 M and by using 1 M HCl at 180 °C. The experimental results show that the Bronsted acid-catalyzed reaction pathway consists of glucose decomposition to levoglucosan (LG), conversion of LG to 5-hydroxymethylfurfural (HMF), and rehydration of HMF to LA. The experimental data yields a good fitting by assuming a first-order reaction model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
10
|
Reactive Chromatography Applied to Ethyl Levulinate Synthesis: A Proof of Concept. Processes (Basel) 2021. [DOI: 10.3390/pr9091684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Levulinic acid (LA) has been highlighted as one of the most promising platform chemicals, providing a wide range of possible derivatizations to value-added chemicals as the ethyl levulinate obtained through an acid catalyzed esterification reaction with ethanol that has found application in the bio-fuel market. Being a reversible reaction, the main drawback is the production of water that does not allow full conversion of levulinic acid. The aim of this work was to prove that the chromatographic reactor technology, in which the solid material of the packed bed acts both as stationary phase and catalyst, is surely a valid option to overcome such an issue by overcoming the thermodynamic equilibrium. The experiments were conducted in a fixed-bed chromatographic reactor, packed with Dowex 50WX-8 as ion exchange resin. Different operational conditions were varied (e.g., temperature and flow rate), pulsing levulinic acid to the ethanol stream, to investigate the main effects on the final conversion and separation efficiency of the system. The effects were described qualitatively, demonstrating that working at sufficiently low flow rates, LA was completely converted, while at moderate flow rates, only a partial conversion was achieved. The system worked properly even at room temperature (303 K), where LA was completely converted, an encouraging result as esterification reactions are normally performed at higher temperatures.
Collapse
|
11
|
Yu Z, Ji N, Xiong J, Li X, Zhang R, Zhang L, Lu X. Ruthenium‐Nanoparticle‐Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void‐Confinement Effect. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Jian Xiong
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| | - Xiaoyun Li
- School of Agriculture Sun Yat-sen University Guangzhou Guangdong 510275 P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Lidong Zhang
- State Key Laboratory of Fire Science University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xuebin Lu
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| |
Collapse
|
12
|
Capecci S, Wang Y, Delgado J, Casson Moreno V, Mignot M, Grénman H, Murzin DY, Leveneur S. Bayesian Statistics to Elucidate the Kinetics of γ-Valerolactone from n-Butyl Levulinate Hydrogenation over Ru/C. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sarah Capecci
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, 76000 Rouen, France
- Dipartimento di Ingegneria Chimica, Civile, Ambientale e dei Materiali, Alma Mater Studiorum—Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Yanjun Wang
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, 76000 Rouen, France
| | - Jose Delgado
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, 76000 Rouen, France
- Laboratory of Industrial Chemistry & Reaction Engineering, Department of Chemical Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Valeria Casson Moreno
- Dipartimento di Ingegneria Chimica, Civile, Ambientale e dei Materiali, Alma Mater Studiorum—Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Mélanie Mignot
- COBRA UMR CNRS 6014, Normandie Université, INSA de Rouen, avenue de l’Université, Saint-Etienne-du-Rouvray 76800, France
| | - Henrik Grénman
- Laboratory of Industrial Chemistry & Reaction Engineering, Department of Chemical Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Dmitry Yu. Murzin
- Laboratory of Industrial Chemistry & Reaction Engineering, Department of Chemical Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Sébastien Leveneur
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, 76000 Rouen, France
| |
Collapse
|
13
|
Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes (Basel) 2021. [DOI: 10.3390/pr9071234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.
Collapse
|
14
|
Yu Z, Ji N, Xiong J, Li X, Zhang R, Zhang L, Lu X. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect. Angew Chem Int Ed Engl 2021; 60:20786-20794. [PMID: 34159675 DOI: 10.1002/anie.202107314] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/17/2022]
Abstract
As a typical class of man-made nanoreactors, metal-loaded hollow carbon nanostructures (MHC nanoreactors) exhibit competitive potentials in the heterogeneous catalysis due to their tailorable microenvironment effects, in which the void-confinement effect is one of the most fundamental functions in boosting the catalytic performance. Herein this paper, Ru-loaded hollow carbon spheres are employed as nanoreactors with a crucial biomass hydrogenation process, levulinic acid (LA) hydrogenation into γ-valerolactone, as the probe reaction to further recognize the forming mechanism of this pivotal effect. We demonstrated that the void-confinement effect of the selected MHC nanoreactors is essentially driven by an integrating action of electronic metal-support interaction, reactant enrichment and diffusion, which are mainly ascribed to peculiar properties of hollow nanoreactors both in electronic and structural aspects, respectively. This work offers a distinct case for interpreting the catalytic behaviour of MHC nanoreactors, which could potentially promise broader insights into the microenvironment engineering strategies of hollow nanostructures.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, Tibet, 850000, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Lidong Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa, Tibet, 850000, P. R. China
| |
Collapse
|
15
|
Weng R, Lu X, Ji N, Fukuoka A, Shrotri A, Li X, Zhang R, Zhang M, Xiong J, Yu Z. Taming the butterfly effect: modulating catalyst nanostructures for better selectivity control of the catalytic hydrogenation of biomass-derived furan platform chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01708j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This minireview highlights versatile routes for catalyst nanostructure modulation for better hydrogenation selectivity control of typical biomass-derived furan platform chemicals to tame the butterfly effect on the catalytic selectivity.
Collapse
Affiliation(s)
- Rengui Weng
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou 350118, P.R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangdong 510275, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Ming Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|