1
|
Zamisa MK, Seadira TW, Baloyi SJ. Transforming wastewater treatment: Recent advancements in Catalytic Wet Air Oxidation with pillared clay catalysts for phenol remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124842. [PMID: 39209055 DOI: 10.1016/j.envpol.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Catalytic Wet Air Oxidation (CWAO) has recently been recognized as a promising technique for degrading persistent organic pollutants, such as phenol, in wastewater. Among various catalysts, Pillared Interlayer Clays (PILCs) stand out due to their high specific surface area and porous nature. This review delves into the latest progress in CWAO processes utilizing PILCs for the degradation of organic contaminants such as phenol in wastewater. It meticulously assesses the synthesis of PILCs, and their structural properties, including monolithic forms, to understand their effect on catalyst efficiency. Key insights into how these attributes affect the phenol degradation rate and the CWAO process's stability are discussed, providing crucial direction for enhancing catalyst performance. The review highlights the significance of choosing catalysts that offer a balance between cost-efficiency and operational efficacy under mild conditions. The recent results are reported, summarized, and compared, thus proving the feasibility of using PILCs as promising materials for phenol removal. The reaction parameters, phenol conversion, and degradation mechanisms are highlighted. The catalytic efficiency of PILCs was significantly affected by the synthesis methods and reaction parameters, and outperformed most costly catalysts. PILCs are highlighted as especially advantageous catalysts, offering strong performance at lower costs, which boosts the up-scaling opportunities of CWAO methods. This analysis also points out research gaps and proposes directions for future studies, such as exploring innovative PILC synthesis methods to improve their catalytic effectiveness and durability further. It stresses the need to incorporate environmental and sustainability considerations into catalyst design and selection, aligning with the principles of green chemistry in wastewater treatment. Finally, we conclude that proposing new directions for PILCs in CWAO in further naturally-based surface modifications, is also a promising approach for PILCs to perform more efficiently.
Collapse
Affiliation(s)
- Mantsopa K Zamisa
- Department of Chemical and Materials Engineering, University of South Africa, Florida Park, Roodepoort, 1710, South Africa.
| | - Tumelo W Seadira
- Department of Chemical and Materials Engineering, University of South Africa, Florida Park, Roodepoort, 1710, South Africa.
| | - Siwela J Baloyi
- Smart Places Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, 0001, South Africa
| |
Collapse
|
2
|
Napruszewska BD, Duraczyńska D, Kryściak-Czerwenka J, Nowak P, Serwicka EM. Clay Minerals/TiO 2 Composites-Characterization and Application in Photocatalytic Degradation of Water Pollutants. Molecules 2024; 29:4852. [PMID: 39459218 PMCID: PMC11510303 DOI: 10.3390/molecules29204852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
TiO2 used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by immobilizing TiO2 NPs on the surface of exfoliated clay minerals. A series of TiO2/clay mineral composites were obtained using five different clay components: the Na-, CTA-, or H-form of montmorillonite (Mt) and Na- or CTA-form of laponite (Lap). The TiO2 component was prepared using the inverse microemulsion method. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, FTIR spectroscopy, thermal analysis, and N2 adsorption-desorption isotherms. It was shown that upon composite synthesis, the Mt interlayer became filled by a mixture of CTA+ and hydronium ions, regardless of the nature of the parent clay, while the structure of Lap underwent partial destruction. The composites displayed high specific surface area and uniform mesoporosity determined by the size of the TiO2 nanoparticles. The best textural parameters were shown by composites containing clay components whose structure was partially destroyed; for instance, Ti/CTA-Lap had a specific surface area of 420 m2g-1 and a pore volume of 0.653 cm3g-1. The materials were tested in the photodegradation of methyl orange and humic acid upon UV irradiation. The photocatalytic activity could be correlated with the development of textural properties. In both reactions, the performance of the most photoactive composites surpassed that of the reference commercial P25 titania.
Collapse
Affiliation(s)
| | | | | | | | - Ewa M. Serwicka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (B.D.N.); (D.D.); (J.K.-C.)
| |
Collapse
|
3
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Nocchetti M, O'Hare D, Rabu P, Melanova K, Leroux F. Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health. Dalton Trans 2024; 53:14551-14581. [PMID: 39046465 DOI: 10.1039/d4dt00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, B.P. 50840, F54011, NancyCedex, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
4
|
Napruszewska BD, Walczyk A, Duraczyńska D, Kryściak-Czerwenka J, Karcz R, Gaweł A, Nowak P, Serwicka EM. TiO 2 Nanoparticles with Adjustable Phase Composition Prepared by an Inverse Microemulsion Method: Physicochemical Characterization and Photocatalytic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1130. [PMID: 38998735 PMCID: PMC11243671 DOI: 10.3390/nano14131130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Titania nanoparticles (NPs) find wide application in photocatalysis, photovoltaics, gas sensing, lithium batteries, etc. One of the most important synthetic challenges is maintaining control over the polymorph composition of the prepared nanomaterial. In the present work, TiO2 NPs corresponding to anatase, rutile, or an anatase/rutile/brookite mixture were obtained at 80 °C by an inverse microemulsion method in a ternary system of water/cetyltrimethylammonium bromide/1-hexanol in a weight ratio of 17:28:55. The only synthesis variables were the preparation of the aqueous component and the nature of the Ti precursor (Ti(IV) ethoxide, isopropoxide, butoxide, or chloride). The materials were characterized with X-ray diffraction, scanning/transmission electron microscopy, N2 adsorption-desorption isotherms, FTIR and Raman vibrational spectroscopies, and diffuse reflectance spectroscopy. The synthesis products differed significantly not only in phase composition, but also in crystallinity, textural properties, and adsorption properties towards water. All TiO2 NPs were active in the photocatalytic decomposition of rhodamine B, a model dye pollutant of wastewater streams. The mixed-phase anatase/rutile/brookite nanopowders obtained from alkoxy precursors showed the best photocatalytic performance, comparable to or better than the P25 reference. The exceptionally high photoactivity was attributed to the advantageous electronic effects known to accompany multiphase titania composition, namely high specific surface area and strong surface hydration. Among the single-phase materials, anatase samples showed better photoactivity than rutile ones, and this effect was associated, primarily, with the much higher specific surface area of anatase photocatalysts.
Collapse
Affiliation(s)
- Bogna D Napruszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Anna Walczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
- Faculty of Chemistry, Jagiellonian University Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Joanna Kryściak-Czerwenka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Robert Karcz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Adam Gaweł
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Paweł Nowak
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Ewa M Serwicka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
5
|
Michalik A, Napruszewska BD, Duraczyńska D, Walczyk A, Serwicka EM. Composites of Montmorillonite and Titania Nanoparticles Prepared by Inverse Microemulsion Method: Physico-Chemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:686. [PMID: 36839054 PMCID: PMC9967158 DOI: 10.3390/nano13040686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
TiO2/montmorillonite composites were synthesized using inverse micellar route for the preparation of titania nanoparticles (4-6 nm diameter) in 1-hexanol and for the dispersion of one of the clay components. Two series of composites were obtained: one derived from cetyltrimethylammonium organomontmorillonite (CTA-Mt), exfoliated in 1-hexanol, and the other from sodium form of montmorillonite (Na-Mt) dispersed by formation of an inverse microemulsion in 1-hexanol. The TiO2 content ranged from 16 to 64 wt.%. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, thermal analysis, and N2 adsorption-desorption isotherms. The Na-Mt-derived component was shown to undergo transformation to CTA-Mt, as indicated by basal spacing of 17.5 nm, due to the interaction with the CTABr surfactant in inverse microemulsion. It was also better dispersed and intermixed with TiO2 nanoparticles. As a result, the TiO2/Na-Mt series displayed superior textural properties, with specific surface area up to 256 m2g-1 and pore volume up to 0.247 cm3g-1 compared with 208 m2g-1 and 0.231 cm3g-1, respectively, for the TiO2/CTA-Mt counterpart. Members of both series were uniformly mesoporous, with the dominant pore size around 5 nm, i.e., comparable with the dimensions of titania nanoparticles. The advantage of the adopted synthesis method is discussed in the context of other preparative procedures used for manufacturing of titania-clay composites.
Collapse
|
6
|
Core-shell Bi-containing spheres and TiO2 nanoparticles co-loaded on kaolinite as an efficient photocatalyst for methyl orange degradation. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications. ENERGIES 2022. [DOI: 10.3390/en15155607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although they are of significant importance for environmental applications, the industrialization of photocatalytic techniques still faces many difficulties, and the most urgent concern is cost control. Natural minerals possess abundant chemical inertia and cost-efficiency, which is suitable for hybridizing with various effective photocatalysts. The use of natural minerals in photocatalytic systems can not only significantly decrease the pure photocatalyst dosage but can also produce a favorable synergistic effect between photocatalyst and mineral substrate. This review article discusses the current progress regarding the use of various mineral classes in photocatalytic applications. Owing to their unique structures, large surface area, and negatively charged surface, silicate minerals could enhance the adsorption capacity, reduce particle aggregation, and promote photogenerated electron-hole pair separation for hybrid photocatalysts. Moreover, controlling the morphology and structure properties of these materials could have a great influence on their light-harvesting ability and photocatalytic activity. Composed of silica and alumina or magnesia, some silicate minerals possess unique orderly organized porous or layered structures, which are proper templates to modify the photocatalyst framework. The non-silicate minerals (referred to carbonate and carbon-based minerals, sulfate, and sulfide minerals and other special minerals) can function not only as catalyst supports but also as photocatalysts after special modification due to their unique chemical formula and impurities. The dye-sensitized minerals, as another natural mineral application in photocatalysis, are proved to be superior photocatalysts for hydrogen evolution and wastewater treatment. This work aims to provide a complete research overview of the mineral-supported photocatalysts and summarizes the common synergistic effects between different mineral substrates and photocatalysts as well as to inspire more possibilities for natural mineral application in photocatalysis.
Collapse
|
8
|
Bahranowski K, Klimek A, Gaweł A, Olejniczak Z, Serwicka EM. Rehydration Driven Acid Impregnation of Thermally Pretreated Ca-Bentonite—Evolution of the Clay Structure. MATERIALS 2022; 15:ma15062067. [PMID: 35329522 PMCID: PMC8951250 DOI: 10.3390/ma15062067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
A new approach to acid activation of raw Ca-bentonite was explored. The method consisted in dehydration of clay by thermal pretreatment at 200 °C, followed by immediate impregnation with H2SO4 solution. The acid concentration was 1.5 × or 2.0 × cation exchange capacity (CEC) of clay. The volume of the liquid was adjusted so as to leave the material in the apparently dry state. Structural evolution of the activated solids after 1, 2, 3, and 4 weeks of storage was monitored with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning nuclear magnetic resonance (MAS NMR), and chemical analysis. In the macroscopically dry solids, the rehydrated interlayer Ca2+ underwent rapid exchange with H3O+ and formed extra-framework gypsum. Acid attack on montmorillonite structure resulted in continuous removal of layer forming Mg, Al, and Fe cations, with Mg2+ being eliminated most efficiently. No significant damage to the montmorillonite lattice was observed. Al was extracted both from the tetrahedral and the octahedral sheets. Under less acidic conditions, the monohydrated H-montmorillonite changed upon storage to bi-hydrated form, as a result of clay auto-transformation. Higher concentrations of acid in the pore network of clay stabilized the H-form of montmorillonite. The data indicate that compositional transformation of acid impregnated bentonite extended beyond the one month of aging investigated in the present work.
Collapse
Affiliation(s)
- Krzysztof Bahranowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (A.G.)
- Correspondence:
| | - Agnieszka Klimek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (A.G.)
| | - Adam Gaweł
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (A.G.)
| | - Zbigniew Olejniczak
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland;
| | - Ewa M. Serwicka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| |
Collapse
|
9
|
Fatimah I, Fadillah G, Yanti I, Doong RA. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:825. [PMID: 35269318 PMCID: PMC8912419 DOI: 10.3390/nano12050825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Advanced oxidation processes (AOPs) utilizing heterogeneous catalysts have attracted great attention in the last decade. The use of solid catalysts, including metal and metal oxide nanoparticle support materials, exhibited better performance compared with the use of homogeneous catalysts, which is mainly related to their stability in hostile environments and recyclability and reusability. Various solid supports have been reported to enhance the performance of metal and metal oxide catalysts for AOPs; undoubtedly, the utilization of clay as a support is the priority under consideration and has received intensive interest. This review provides up-to-date progress on the synthesis, features, and future perspectives of clay-supported metal and metal oxide for AOPs. The methods and characteristics of metal and metal oxide incorporated into the clay structure are strongly influenced by various factors in the synthesis, including the kind of clay mineral. In addition, the benefits of nanomaterials from a green chemistry perspective are key aspects for their further considerations in various applications. Special emphasis is given to the basic schemes for clay modifications and role of clay supports for the enhanced mechanism of AOPs. The scaling-up issue is suggested for being studied to further applications at industrial scale.
Collapse
Affiliation(s)
- Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Yogyakarta 55112, Indonesia; (G.F.); (I.Y.)
| | - Ganjar Fadillah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Yogyakarta 55112, Indonesia; (G.F.); (I.Y.)
| | - Ika Yanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Yogyakarta 55112, Indonesia; (G.F.); (I.Y.)
| | - Ruey-an Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|