1
|
Chang R, Cheng S, Bu Y. Clathrate Hydrates as a Kind of Promising Ice Nanoreactors. Chemistry 2024; 30:e202402197. [PMID: 38923156 DOI: 10.1002/chem.202402197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Since their discovery, clathrate hydrates (CHs) have received great attention both from theoretical and experimental aspects due to their great potential for gas storage and prospective applications as icy crystal materials. However, there has been limited research on the decomposition, reduction or other reactions of gases enclosed in CHs. Thanks to their unique hydrogen bonding network and cavity structures, CHs can serve as the promising nanoreactors to achieve chemical conversions, e. g. reducing greenhouse gases. In this review-type article, we characterize the potential performance of such CHs nanoreactors by discussing their multiple functions including important roles of hydrogen bonds in CHs, e. g. the confinement effect and proton source, and then discuss the enhanced electron-binding ability of guest molecules and the structures and properties of trapped electrons in the stacked nanocages, which contribute to our understanding of chemical reactions occurring in CHs. Finally, we provide detailed analyses of representative reaction mechanisms underwent in CH nanoreactors and effective calculational and molecular dynamics simulation methods. This review-type article aims to provide a detailed summary about the functional characteristics of CHs and reactivity in CHs, which make CHs a kind of promising icy nanoreactors.
Collapse
Affiliation(s)
- Ruisi Chang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shibo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Tudor M, Borlan R, Maniu D, Astilean S, de la Chapelle ML, Focsan M. Plasmon-enhanced photocatalysis: New horizons in carbon dioxide reduction technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172792. [PMID: 38688379 DOI: 10.1016/j.scitotenv.2024.172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The urgent need for transition to renewable energy is underscored by a nearly 50 % increase in atmospheric carbon dioxide levels over the past century. The combustion of fossil fuels for energy production, transportation, and industrial activities are the main contributors to carbon dioxide emissions in the anthroposphere. Present approaches to reducing carbon emissions are proving inefficient, thereby accentuating the relevance of carbon dioxide photocatalysis in combating climate change - one of the critical issues of public concern. This process uses sunlight to convert carbon dioxide into valuable products, e.g., clean fuels, effectively reducing the carbon footprint and offering a sustainable use of carbon dioxide. In this context, plasmonic nanoparticles such as gold, silver, and copper play a pivotal role due to their proficiency in absorbing a wide range of light spectra, thereby effectively generating the necessary electrons and holes for the degradation of pollutants and surpassing the capabilities of traditional semiconductor catalysts. This review meticulously examines the latest advancements in plasmon-based carbon dioxide photocatalysis, scrutinizing the methodologies, characterizations, and experimental outcomes. The critical evaluation extends to exploring adjustments in the dimensional and morphological aspects of plasmonic nanoparticles, complemented by the incorporation of stabilizing agents, which may offer additional benefits. Furthermore, the review includes a thorough analysis of production rates and quantum yields based on different plasmonic materials and nanoparticle shapes and sizes, enriching the ongoing discourse on effective solutions in the field. Thus, our work emphasizes the pivotal role of plasmon-based photocatalysts in reducing carbon dioxide, investigating both the merits and challenges associated with integrating this emerging technology into climate change mitigation efforts.
Collapse
Affiliation(s)
- Madalina Tudor
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Marc Lamy de la Chapelle
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; IMMM - UMR 6283 CNRS, Le Mans Université, Olivier Messiaen Avenue, 72085 Le Mans, France.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Ursaki V, Braniste T, Zalamai V, Rusu E, Ciobanu V, Morari V, Podgornii D, Ricci PC, Adelung R, Tiginyanu I. Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:490-499. [PMID: 38711580 PMCID: PMC11070954 DOI: 10.3762/bjnano.15.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Aeromaterials represent a class of increasingly attractive materials for various applications. Among them, aero-ZnS has been produced by hydride vapor phase epitaxy on sacrificial ZnO templates consisting of networks of microtetrapods and has been proposed for microfluidic applications. In this paper, a cost-effective technological approach is proposed for the fabrication of aero-ZnS by using physical vapor transport with Sn2S3 crystals and networks of ZnO microtetrapods as precursors. The morphology of the produced material is investigated by scanning electron microscopy (SEM), while its crystalline and optical qualities are assessed by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy, respectively. We demonstrate possibilities for controlling the composition and the crystallographic phase content of the prepared aerogels by the duration of the technological procedure. A scheme of deep energy levels and electronic transitions in the ZnS skeleton of the aeromaterial was deduced from the PL analysis, suggesting that the produced aerogel is a potential candidate for photocatalytic and sensor applications.
Collapse
Affiliation(s)
- Veaceslav Ursaki
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
- Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| | - Tudor Braniste
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Victor Zalamai
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Emil Rusu
- Institute of Electronic Engineering and Nanotechnology „D. Ghitu”, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Vladimir Ciobanu
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Vadim Morari
- Institute of Electronic Engineering and Nanotechnology „D. Ghitu”, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Daniel Podgornii
- Institute of Applied Physics, State University of Moldova, Chisinau, Republic of Moldova
| | | | - Rainer Adelung
- Department of Material Science, Kiel University, Kiel, Germany
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
- Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| |
Collapse
|
4
|
Wang J, Luo X. Theoretical Investigation of the BCN Monolayer and Their Derivatives for Metal-free CO 2 Photocatalysis, Capture, and Utilization. ACS OMEGA 2024; 9:3772-3780. [PMID: 38284013 PMCID: PMC10809229 DOI: 10.1021/acsomega.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
In recent years, carbon capture and utilization (CCU) has been explored as an attractive solution to global warming, which is mainly caused by increasing CO2 emission levels. Many functional materials have been developed for removing atmospheric CO2 and converting it to more useful forms of carbon. Traditional metallic photocatalytic species have drawbacks-photocorrosion, low visible-light absorbance, and environmental damage; therefore, metal-free materials have attracted considerable research attention. In particular, boron nitride (BN) possesses unique B-N bonds, characterized by a large difference in the electronegativity of atoms that facilitates CO2 reduction, and catalytic CO2 reduction by boron carbon nitride (BCN) has been demonstrated under visible light; hence, these two materials can be considered potential CO2 reduction photocatalysts. However, further modification of the materials and their applicability to other CCU applications have not been extensively explored. Therefore, we decided to investigate the modification of BCN monolayers, with the aim of ensuring that the properties of the materials are better suited, first, to the requirements of CO2 photocatalysis, and second, to those of carbon capture or other optoelectronic applications. In this study, we considered various novel BCN monolayers, based on modification via metal-free substitutional doping and nitrogen vacancy creation, and performed first-principles density functional theory calculations. The effects of the modifications on band gap tuning, charge transfer, and the CO2 adsorption ability were all studied. Specifically, ON-B13C8N11 and SiC-2 × 2-BC6N were shown to possess excellent properties for photocatalytic CO2 reduction, and OC-2 × 2-BC6N and Nv-4 × 4-BN can be considered for future CO2 capture materials. These results contribute to existing CCU approaches, suggesting that BCN monolayer modification merits further investigation, and offering insights relevant to other photocatalytic applications.
Collapse
Affiliation(s)
- Jingyuan Wang
- National Graphene
Research
and Development Center, Springfield, Virginia 22151, United States
| | - Xuan Luo
- National Graphene
Research
and Development Center, Springfield, Virginia 22151, United States
| |
Collapse
|
5
|
Huang H, Xue L, Bu Y. Multifunctional Roles of Clathrate Hydrate Nanoreactors for CO 2 Reduction. Chemistry 2023; 29:e202302253. [PMID: 37580312 DOI: 10.1002/chem.202302253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
In this study, we explore a possible platform for the CO2 reduction (CO2 R) in one of water's solid phases, namely clathrate hydrates (CHs), by ab initio molecular dynamics and well-tempered metadynamics simulations with periodic boundary conditions. We found that the stacked H2 O nanocages in CHs help to initialize CO2 R by increasing the electron-binding ability of CO2 . The substantial CO2 R processes are further influenced by the hydrogen bond networks in CHs. The first intermediate CO2 - in this process can be stabilized through cage structure reorganization into the H-bonded [CO2 - ⋅⋅⋅H-OHcage ] complex. Further cooperative structural dynamics enables the complex to convert into a vital transient [CO2 2- ⋅⋅⋅H-OHcage ] intermediate in a low-barrier disproportionation-like process. Such a highly reactive intermediate spontaneously triggers subsequent double proton transfer along its tethering H-bonds, finally converting it into HCOOH. These hydrogen-bonded nanoreactors feature multiple functions in facilitating CO2 R such as confining, tethering, H-bond catalyzing and proton pumping. Our findings have a general interest and extend the knowledge of CO2 R into porous aqueous systems.
Collapse
Affiliation(s)
- Haibei Huang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lijuan Xue
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Jing H, Zhao L, Song G, Li J, Wang Z, Han Y, Wang Z. Application of a Mixed-Ligand Metal-Organic Framework in Photocatalytic CO 2 Reduction, Antibacterial Activity and Dye Adsorption. Molecules 2023; 28:5204. [PMID: 37446866 DOI: 10.3390/molecules28135204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In this paper, a known mixed-ligand MOF {[Co2(TZMB)2(1,4-bib)0.5(H2O)2]·(H2O)2}n (compound 1) was reproduced, and its potential application potential was explored. It was found that compound 1 had high photocatalytic activity for CO2 reduction. After 12 h of illumination, the formation rate of CO, which is the product of CO2 reduction by compound 1, reached 3012.5 μmol/g/h. At the same time, compound 1 has a good antibacterial effect on Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albicans (C. albicans), which has potential research value in the medical field. In addition, compound 1 can effectively remove Congo Red from aqueous solutions and achieve the separation of Congo red from mixed dye solutions.
Collapse
Affiliation(s)
- Hongwei Jing
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lun Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Guanying Song
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jiayu Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ziyun Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yue Han
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhexin Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
7
|
Facile Construction of Intramolecular g-CN-PTCDA Donor-Acceptor System for Efficient CO2 Photoreduction. Catalysts 2023. [DOI: 10.3390/catal13030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Due to the different electron affinity, the construction of a donor-acceptor (DA) system in the graphitic carbon nitride (g-CN) matrix is an attractive tactic to accelerate photo-induced electron-holes separation, and then further elevate its photocatalytic performance. In this work, perylene tetracarboxylic dianhydride (PTCDA) with magnificent electron affinity and excellent thermal stability was chosen to copolymerize with urea via facile one-pot thermal copolymerization to fabricate g-CN-PTCDA equipped with DA structures. The specific surface area of g-CN-PTCDA would be enlarged and the visible light absorption range would be broadened simultaneously when adopting this copolymerization strategy. A series of characterizations such as electron paramagnetic resonance (EPR), steady and transient photoluminescence spectra (PL), electrochemical impedance spectroscopy (EIS), and photocurrent tests combined with computational simulation confirmed the charge separation and transfer efficiency dramatically improved due to the DA structures construction. When 0.25% wt PTCDA was introduced, the CO evolution rate was nearly 23 times than that of pristine g-CN. The CO evolution rate could reach up to 87.2 μmol g−1 h−1 when certain Co2+ was added as co-catalytic centers. Meanwhile, g-CN-1 mg PTCDA-Co exhibited excellent long-term stability and recyclability as a heterogeneous photocatalyst. This research may shed light on designing more effective DA structures for solar-to-energy conversion by CO2 reduction.
Collapse
|
8
|
Yang J, Yang Z, Yang K, Yu Q, Zhu X, Xu H, Li H. Indium-based ternary metal sulfide for photocatalytic CO2 reduction application. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Abstract
The photocatalytic transformation of CO2 to valuable man-made feedstocks is a promising method for balancing the carbon cycle; however, it is often hampered by the consumption of extra hole scavengers. Here, a synergistic redox system using photogenerated electron-hole pairs was constructed by employing a porous carbon nitride with many cyanide groups as a metal-free photocatalyst. Selective CO2 reduction to CO using photogenerated electrons was achieved under mild conditions; simultaneously, various alcohols were effectively oxidized to value-added aldehydes using holes. The results showed that thermal calcination process using ammonium sulfate as porogen contributes to the construction of a porous structure. As-obtained cyanide groups can facilitate charge carrier separation and promote moderate CO2 adsorption. Electron-donating groups in alcohols could enhance the activity via a faster hydrogen-donating process. This concerted photocatalytic system that synergistically utilizes electron-hole pairs upon light excitation contributes to the construction of cost-effective and multifunctional photocatalytic systems for selective CO2 reduction and artificial photosynthesis.
Collapse
|